Revisão Acesso aberto Revisado por pares

Contributions of the epidermal growth factor receptor to keratinocyte motility

1998; Wiley; Volume: 43; Issue: 5 Linguagem: Inglês

10.1002/(sici)1097-0029(19981201)43

ISSN

1097-0029

Autores

Laurie G. Hudson, Lisa J. McCawley,

Tópico(s)

Cell Adhesion Molecules Research

Resumo

Microscopy Research and TechniqueVolume 43, Issue 5 p. 444-455 Topical PaperFree Access Contributions of the epidermal growth factor receptor to keratinocyte motility Laurie G. Hudson, Corresponding Author Laurie G. Hudson [email protected] Program in Pharmacology and Toxicology, College of Pharmacy and Department of Cell Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131University of New Mexico Health Sciences Center, Program in Pharmacology and Toxicology, College of Pharmacy, Rm B-80, NRPH, 2502 Marble NE, Albuquerque, NM 87131.Search for more papers by this authorLisa J. McCawley, Lisa J. McCawley Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611Search for more papers by this author Laurie G. Hudson, Corresponding Author Laurie G. Hudson [email protected] Program in Pharmacology and Toxicology, College of Pharmacy and Department of Cell Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131University of New Mexico Health Sciences Center, Program in Pharmacology and Toxicology, College of Pharmacy, Rm B-80, NRPH, 2502 Marble NE, Albuquerque, NM 87131.Search for more papers by this authorLisa J. McCawley, Lisa J. McCawley Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611Search for more papers by this author First published: 11 December 1998 https://doi.org/10.1002/(SICI)1097-0029(19981201)43:5 3.0.CO;2-CCitations: 71AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The epidermal growth factor (EGF) receptor plays a central role in numerous aspects of keratinocyte biology. In normal epidermis, the EGF receptor is important for autocrine growth of this renewing tissue, suppression of terminal differentiation, promotion of cell survival, and regulation of cell migration during epidermal morphogenesis and wound healing. In wounded skin, the EGF receptor is transiently up-regulated and is an important contributor to the proliferative and migratory aspects of wound reepithelialization. In keratinocytic carcinomas, aberrant expression or activation of the EGF receptor is common and has been proposed to play a role in tumor progression. Many cellular processes such as altered cell adhesion, expression of matrix degrading proteinases, and cell migration are common to keratinocytes during wound healing and in metastatic tumors. The EGF receptor is able to regulate each of these cellular functions and we propose that transient and dynamic elevation of EGF receptor during wound healing, or constitutive overexpression in tumors, provides an important contribution to the migratory and invasive potential of keratinocytes. Microsc. Res. Tech. 43:444–455, 1998. © 1998 Wiley-Liss, Inc. References Aaronson, S. A., Rubin, J. S. Finch, P. W., Wong, J., Marchese, C., Falco, J., Taylor, W. G., and Kraus, M. H. (1990) Growth factor-regulated pathways in epithelial cell proliferation. Am. Rev. Respir. Dis., 142: S7–10. 10.1164/ajrccm/142.6_Pt_2.S7 CASPubMedWeb of Science®Google Scholar Alimandi, M., Wang, L. M., Bottaro, D., Lee, C. C., Kuo, A., Frankel, M., Fedi, P., Tang, C., Lippman, M., and Pierce, J. H. (1997) Epidermal growth factor and betacellulin mediate signal transduction through co-expressed erbB2 and erbB3 receptors. EMBO J., 16: 5608–5617. 10.1093/emboj/16.18.5608 CASPubMedWeb of Science®Google Scholar Anand-Apte, B., and Zetter B. (1997) Signaling mechanisms in growth factor-stimulated motility. Stem Cells, 15: 259–67. 10.1002/stem.150259 CASPubMedWeb of Science®Google Scholar Ando, Y., and Jensen, P. J. (1993) Epidermal growth factor and insulin-like growth factor I enhance keratincoyte migration. J. Invest. Derm., 100: 633–639. 10.1111/1523-1747.ep12472297 CASPubMedWeb of Science®Google Scholar Ando, Y., and Jenson, P. J. (1996) Protein kinase C mediates upregulation of urokinase and its receptor in the migrating keratinocytes of wounded cultures, but urokinase is not required for movement across a substratum in vitro. J. Cell Phys., 167: 500–511. 10.1002/(SICI)1097-4652(199606)167:3 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Andree, C., Swain, W. F., Page, C. P., Macklin, M. D., Slama, J., Hatzis, D., and Eriksson, E. (1994) In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc. Natl. Acad. Sci. U.S.A., 91: 12188–12192. 10.1073/pnas.91.25.12188 CASPubMedWeb of Science®Google Scholar Azuma, T., Witke, W., Stossel, T. P., Hartwig, J. H., and Kwiatkowski, D. J. (1998) Gelosin is a downstream effector of rac for fibroblast motility. EMBO J., 17: 1362–1370. 10.1093/emboj/17.5.1362 CASPubMedWeb of Science®Google Scholar Barth, A. I., Nathke, I. S., and Nelson, W. J. (1997) Cadherins, catenins and APC protein: interplay between cytoskeleton complexes and signaling pathway. Curr. Opin. Cell Biol., 9: 693–690. 10.1016/S0955-0674(97)80122-6 CASWeb of Science®Google Scholar Barrandon, Y., and Green, H. (1987) Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell, 50: 1131–1137. 10.1016/0092-8674(87)90179-6 CASPubMedWeb of Science®Google Scholar Behrens, J., Vakaet, L., Friis, R., Winterhager, E., Van Roy, F., Mareel, M. M., and Birchmeier, W. (1993) Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β catenin complex in cells transformed with temperature sensitive v-src gene. J. Cell Biol., 120: 757–766. 10.1083/jcb.120.3.757 CASPubMedWeb of Science®Google Scholar Beerli, R. R., and Hynes, N. E. (1996) Epidermal growth factor related peptides activate distinct subsets of erbB receptors and differ in their biological activities. J. Biol. Chem., 271: 6071–6076. 10.1074/jbc.271.11.6071 CASPubMedWeb of Science®Google Scholar Ben-Baruch, N., and Yarden, Y. (1994) Neu differentiation factors: A family of alternatively spliced neuronal and mesenchymal factors. Proc. Soc. Exp. Biol. Med., 206: 221–227 10.3181/00379727-206-43746 CASPubMedWeb of Science®Google Scholar Ben-Bassat, H., Rosenbaum-Mitrani, S., Hartzstark, Z., Shlomai, Z., Kleinberger-Doron, N., Gazit, A., Plowman, G., Levitzki, R., Tsvieli, R., and Levitzki, A. (1997) Inhibitors of epidermal growth factor receptor kinase and of cyclin dependent kinase 2 activation induce growth arrest, differentiation, and apoptosis of human papilloma virus 16-immortalized human keratinocytes. Cancer Res., 57: 3741–3750. CASPubMedWeb of Science®Google Scholar Bhora, F. Y., Dunkin, B. J., Batzri, S., Aly, H. M., Bass, B. L., Sidawy, A. N., and Harmon, J. W. (1995) Effect of growth factors on cell proliferation and epithelialization in human skin. J. Surg. Res., 59: 236–244. 10.1006/jsre.1995.1160 CASPubMedWeb of Science®Google Scholar Birchmeier, C., Meyer, D., and Riethmacher, D. (1995) Factors controlling growth, motility, and morphogenesis of normal and malignant epithelial cells. Int. Rev. Cytol., 160: 221–266. 10.1016/S0074-7696(08)61556-9 CASPubMedWeb of Science®Google Scholar Boyd, D. (1996) Invasion and metastasis. Cancer Metast. Rev., 15: 77–89. 10.1007/BF00049488 CASPubMedWeb of Science®Google Scholar Boyer, B., and Thiery, J. P. (1993). Epithelium-mesenchyme interconversion as example of epithelial plasticity. APMIS, 101: 257–268. 10.1111/j.1699-0463.1993.tb00109.x CASPubMedWeb of Science®Google Scholar Brown, G. L., Nanney, L. B., Griffin, J., et al. (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N. Engl. J. Med., 321: 76–79. 10.1056/NEJM198907133210203 CASPubMedWeb of Science®Google Scholar Cardinali, M., Pietraszkiewicz, H., Ensley, J. F., and Robbins, K. C. (1995) Tyrosine phosphorylation as a marker for aberrantly regulated growth-promoting pathways in cell lines derived from head and neck malignancies. Int. J. Cancer, 61: 98–103. 10.1002/ijc.2910610117 CASPubMedWeb of Science®Google Scholar Carpenter, G., and Cohen, S. (1979) Epidermal growth factor. Ann. Rev. Biochem., 48: 193–216. 10.1146/annurev.bi.48.070179.001205 CASPubMedWeb of Science®Google Scholar Carraway, K. L., and Cantley, L. C. (1994) A neu acquaintance for erbB3 and erbB 4: a role for receptor heterodimerization in growth signaling. Cell, 78: 5–8. 10.1016/0092-8674(94)90564-9 CASPubMedWeb of Science®Google Scholar Carraway, K. L., Weber, J. L., Unger, M. J., Ledesma, J., Yu, N., Gassmann, M., and Lai, C. (1997) Neuregulin-2, a new ligand of erbB3/erbB4-receptor tyrosine kinases. Nature, 387: 512–516. 10.1038/387512a0 CASPubMedWeb of Science®Google Scholar Cha, D., O'Brien, P., O'Toole, E., Woodley, D., and Hudson, L. G. (1996) Enhanced modulation of keratinocyte motility by transforming growth factor α (TGFα) relative to epidermal growth factor (EGF). J. Invest. Dermatol., 106: 590–597. 10.1111/1523-1747.ep12345083 CASPubMedWeb of Science®Google Scholar Chapman, H. A. (1997) Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr. Opin. Cell Biol., 9: 714–724. 10.1016/S0955-0674(97)80126-3 CASPubMedWeb of Science®Google Scholar Chen, J. D., Kim, J. P., Zhang, K., Sarret, Y., Wynn, K. C., Kramer, R. H., and Woodley, D. T. (1993) Epidermal growth factor (EGF) promotes human keratinocyte locomotion on collagen by increasing the alpha 2 integrin subunit. Exp. Cell Res., 209: 216–223. 10.1006/excr.1993.1304 CASPubMedWeb of Science®Google Scholar Chen, C. S., Lavker, R. M., Rodeck, U., Risse, B., and Jensen, P. J. (1995) Use of a serum-free epidermal culture model to show deleterious effects of epidermal growth factor on morphogenesis and differentiation. J. Invest. Dermatol., 104: 107–112. 10.1111/1523-1747.ep12613595 CASPubMedWeb of Science®Google Scholar Chen, P., Murphy-Ullrich, J., and Wells, A. (1996) A role for gelosin in actuating EGF receptor mediated cell motility. J. Cell Biol., 134: 689–698. 10.1083/jcb.134.3.689 CASPubMedWeb of Science®Google Scholar Coffey, R. J., Derynck, R., Wilcox, J. N., Bringman, T. S., Goustin, A. S., Moses, H. L., and Pittelkow, M. R. (1987) Production and autoinduction of transforming growth factor alpha in human keratinocytes. Nature, 328: 817–820. 10.1038/328817a0 CASPubMedWeb of Science®Google Scholar Cohen, B. D., Kiener, P. A., Green, J. M., Foy, L., Fell, H. P., and Zhang, K. (1996) The relationship between human epidermal growth-like factor expression and cellular transformation in NIH3T3 cells. J. Biol. Chem., 271: 30897–30903. 10.1074/jbc.271.48.30897 CASPubMedWeb of Science®Google Scholar Cook, P. W., Piepkorn, M., Clegg, C. H., Plowman, G. D., DeMay, J. M., Brown, J. R., and Pittelkow, M. R. (1997) Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J. Clin. Invest., 100: 2286–2294. 10.1172/JCI119766 CASPubMedWeb of Science®Google Scholar Cowin, P., and Burke, B. (1996) Cytoskeleton-membrane interactions. Curr. Opin. Cell Biol., 8: 56–65. 10.1016/S0955-0674(96)80049-4 CASPubMedWeb of Science®Google Scholar Credpaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D., and Arpin, M. (1997) Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol., 138: 423–434 10.1083/jcb.138.2.423 CASPubMedWeb of Science®Google Scholar Danilenko, D. M., Ring, B. D., Lu, J. Z., Tarplay, J. E., Chang, D., Liu, N., Wen, D., and Pierce, G. F. (1995) Neu differentiation factor upregulates epidermal migration and integrin expression in excisional wounds. J. Clin. Invest., 95: 842–851. 10.1172/JCI117734 CASPubMedWeb of Science®Google Scholar den Hartigh, J. C., van Bergen en Henegouwen P. M. P., Verkleij, A. J., and Boonstra, J. (1992) The EGF receptor is an actin binding protein. J. Cell Biol., 119: 349–355. 10.1083/jcb.119.2.349 CASPubMedWeb of Science®Google Scholar Derynck R. (1990) Transforming growth factor-alpha. Mol. Reprod. Dev., 27: 3–9. 10.1002/mrd.1080270104 CASPubMedWeb of Science®Google Scholar DiGiovanni, J. (1995) Role of transforming growth factor-α and the epidermal growth factor receptor in multistage mouse skin carcinogenesis. In: Skin Cancer: Mechanisms and Human Relevance. H. Mukhtar, ed. CRC Press, Boaca Raton, pp. 181–197. Google Scholar Dlugosz, A. A., Cheng, C., Williams, E. K., Darwiche, N., Dempsey, P. J., Mann, B., Dunn, A. R., Coffey, R. J. Jr., and Yuspa, S. H. (1995) Autocrine transforming growth factor alpha is dispensible for v-rasHa-induced epidermal neoplasia: Potential involvement of alternate epidermal growth factor receptor ligands. Cancer Res., 55: 1883–1893. CASPubMedWeb of Science®Google Scholar Dlugosz, A. A., Hansen, L., Cheng C., Alexander, N., Denning, M. F., Threadgill, D. W., Magnuson, T., Coffey, R. J. Jr., and Yuspa, S. H. (1997) Targeted disruption of the epidermal growth factor receptor impairs growth of squamous papillomas expresinng the v-ras(Ha) oncogene but does not block in vitro keratinocyte responses to oncogenic ras. Cancer Res., 57: 3180–3188. CASPubMedWeb of Science®Google Scholar Dominey, A. M., Wang, X. J., King, L. E. Jr., Nanney, L. B., Gagne, T. A., Sellheyer, K., Bundman, D. S., Longley, M. A., Rothnagel, J. A., and Greenhalgh, D. A. et al. (1993) Targeted overexpression of transforming growth factor alpha in the epidermis of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ., 4: 1071–1082. CASPubMedWeb of Science®Google Scholar Downing, M. T., Brigstock, D. R., Luquette, M. H., Crissman-Combs, M., and Besner, G. E. (1997) Immunohistochemical localization of heparin-binding epidermal growth factor-like growth factor in normal skin and skin cancers. Histochem. J., 29: 735–744. 10.1023/A:1026417202351 CASPubMedWeb of Science®Google Scholar Drozdoff, V., and Pledger, W. J. (1993) Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations. J. Cell Biol., 123: 909–919. 10.1083/jcb.123.4.909 CASPubMedWeb of Science®Google Scholar Dunsmore, S. E., Rubin, J. S., Kovacs, S. O., Chedid, M., Parks, W. C., and Welgus, H. G. (1996) Mechanism of hepatocyte growth factor stimulation of keratinocyte metalloproteinase production. J. Biol. Chem., 271: 24576–24582. 10.1074/jbc.271.40.24576 CASPubMedWeb of Science®Google Scholar Eccles, S. A., Modjtahedi, H., Box, G., Court, W., Sandle, J., and Dean, C. J. (1995) Significance of the c-erbB family of receptor tyrosine kinases in metastatic cancer and their potential as targets for immunotherapy. Invas. Metast., 14: 337–348. CASWeb of Science®Google Scholar Edman, C. F., Prigent, S. A., Schipper, A., and Feramisco, J. R. (1997) Identification of ErbB3-stimulated genes using modified representational difference analysis. Biochem. J., 323: 113–118. 10.1042/bj3230113 CASPubMedWeb of Science®Google Scholar Elenius, K., Paul, S., Allison, G., Sun, J., and Klagsbrun, M. (1997) Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J., 16: 1268–1278. 10.1093/emboj/16.6.1268 CASPubMedWeb of Science®Google Scholar Fujii, K. (1996) Ligand activation of overexpressed epidermal growth facator receptor results in loss of epithelial phenotype and impaired RGD-sensitive integrin function in HSC-1 cells. J. Invest. Dermatol., 107: 195–202. 10.1111/1523-1747.ep12329606 CASPubMedWeb of Science®Google Scholar Fujii, K., Dousaka-Nakajima, N., and Imamura, S. (1995) Epidermal growth factor enhancement of HSC- 1 human cutaneous squamous carcinoma cell adhesion and migration on type I collagen involves selective upregulation of alpha 2 beta 1 integrin expression. Exp. Cell Res., 216: 261–272. 10.1006/excr.1995.1032 CASPubMedWeb of Science®Google Scholar Gamet, D. C., Pearson, G., Cerione, R. A., and Friedberg, I. (1997) Secondary dimerization between members of the epidermal growth factor receptor family. J. Biol. Chem., 272: 12052–12056. 10.1074/jbc.272.18.12052 CASPubMedWeb of Science®Google Scholar Garrod, D. R. (1993). Desmosomes and hemidesmosomes. Curr. Opin. Cell Biol., 5: 30–40. 10.1016/S0955-0674(05)80005-5 CASPubMedWeb of Science®Google Scholar Gottlieb, A. B., Chang, C. K., Posnett, D. N., Fanelli, B., and Tam, J. P. (1988) Detection of transforming growth factor alpha in normal, malignant, and hyperproliferative human keratinocytes. J. Exp. Med., 167: 670–675. 10.1084/jem.167.2.670 CASPubMedWeb of Science®Google Scholar Grandis, J. R., and Tweardy, D. J. (1993a) Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res., 53: 3579–3584. CASPubMedWeb of Science®Google Scholar Grandis, J. R., and Tweardy, D. J. (1993b) TGFα and EGFR in head and neck cancer. J. Cell. Biochem. Suppl. 17F: 188–191. 10.1002/jcb.240531027 CASPubMedWeb of Science®Google Scholar Graus-Porta, D., Beerli, R. R., Daly, J. M., and Hynes, N. E. (1997) ErbB2, the preferred heterodimerization partner of all erbB receptors, is a mediator of lateral signaling. EMBO J., 16: 1647–1655. 10.1093/emboj/16.7.1647 CASPubMedWeb of Science®Google Scholar Green, K. J., and Stappenbeck, T. S. (1994). The desmosomal plaque: role in attachment of intermediate filaments to the cell surface. In: Molecular Mechanisms of Epithelial Junctions: From Development to Disease. S. Citi, ed. Austin, TX, R. G. Landes Co. pp 157–171. Web of Science®Google Scholar Gronowski, A. M., and Bertics, P. J. (1995) Modulation of epidermal growth factor receptor interaction with detergent-insoluble cytoskeleton and its effects on receptor tyrosine kinase activity. Endocrinology, 136: 2198–2205. 10.1210/en.136.5.2198 CASPubMedWeb of Science®Google Scholar Gumbiner, B. M. (1996) Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell, 84: 345–357. 10.1016/S0092-8674(00)81279-9 CASPubMedWeb of Science®Google Scholar Hall, A. (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu. Rev. Cell Biol., 10: 31–54. 10.1146/annurev.cb.10.110194.000335 CASPubMedWeb of Science®Google Scholar Hashimoto, K., Higashiyama, S., Asada, H., Hashimura, E., Kobayashi, T., Sudo, K., Nakagawa, T., Damm, D., Yoshikawa, K., and Taniguchi, N. (1994) Heparin-binding epidermal growth factor-like growth factor is an autocrine growth factor for human keratinocytes. J. Biol. Chem., 269: 20060–20066. CASPubMedWeb of Science®Google Scholar Hazan, R. B., and Norton, L. (1998) The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J. Biol. Chem., 273: 90778–90784. 10.1074/jbc.273.15.9078 CASWeb of Science®Google Scholar Heldin C. H. (1996) Protein tyrosine kinase receptors. Cancer Surv., 27: 7–24. CASPubMedWeb of Science®Google Scholar Hoschuetzky, H., Aberle, H., and Kemler, R. (1994) Beta-catenin mediates the interaction of the cadherin catenin complex with epidermal growth factor receptor. J. Cell Biol., 127: 1375–1380. 10.1083/jcb.127.5.1375 CASPubMedWeb of Science®Google Scholar Hudson, L. G., and Gill, G. N. (1991) Regulation of gene expression by epidermal growth factor. In: Genetic Engineering, Principles and Methods, Vol. 13. Plenum Press, New York, pp. 137–152. Google Scholar Huang, G. C., Ouyang, X., and Epstein, R. J. (1998) Proxy activation of protein erbB2 by heterologous ligands implies a heterotetrameric mode of receptor tyrosine kinase interaction. Biochem. J., 331: 113–119. 10.1042/bj3310113 CASPubMedWeb of Science®Google Scholar Jhappan, C., Takayama, H., Dickinson, R. B., and Merlino, G. (1994) Transgenic mice provide genetic evidence that transforming growth factor alpha promotes skin tumorigenesis via H-ras-dependent and H-ras-independent pathways. Cell Growth Differentiation, 5: 385–394. CASPubMedWeb of Science®Google Scholar Jenson, P. J., and Rodeck, U. (1993) Autocrine/paracrine regulation of keratinocyte urokinase plasminogen activator through the TGF-alpha/EGF receptor. J. Cell Physiol., 155: 333–339 10.1002/jcp.1041550214 CASPubMedWeb of Science®Google Scholar Jhappan, C., Takayama, H., Dickson, R. B., and Merlino, G. T. (1994) Cell Growth Differ., 5: 385–394. CASPubMedWeb of Science®Google Scholar Ju, W. D., Schiller, J. T., Kazempour, M. K., and Lowry, D. R. (1993) TGFα enhances locomotion of cultured keratinocytes. J. Invest. Dermatol., 100: 628–632. CASPubMedWeb of Science®Google Scholar Juarez, J., Clayman, G., Nakajima, M., Tanabe, K. K., Saya, H., Nicolson, G. L., and Boyd, D. (1993) Role and regulation of expression of 92-kDa type-IV collagenase (MMP-9) in 2 invasive squamous cell carcinoma cell lines of the oral cavity. Int. J. Cancer, 55: 10–18. 10.1002/ijc.2910550104 CASPubMedWeb of Science®Google Scholar Khazaie, K., Schirrmacher, V., and Lichtner R., B. (1993) EGF receptor in neoplasia and metastasis. Cancer Metast. Rev., 12: 255–274. 10.1007/BF00665957 CASPubMedWeb of Science®Google Scholar King, L. E. Jr., Gates, R. E., Stoscheck, C. M., and Nanney, L. B. (1990) The EGF/TGF alpha receptor in skin. J. Invest. Dermatol., 94 (Suppl): 164S–170S. 10.1111/1523-1747.ep12876141 CASPubMedWeb of Science®Google Scholar Kawamoto, T., Mendelsohn, J., Le, A., Sato, G. H., Lazar, C. S., and Gill, G. N. (1984) Relation of epidermal growth factor receptor concentration to growth of human epidermoid carcinoma A431 cells. J. Biol. Chem., 259: 7761–7766. 10.1016/S0021-9258(17)42858-4 CASPubMedWeb of Science®Google Scholar Lauffenburger, D. A., and Horwitz, A. F. (1996) Cell migration: A physically integrated molecular process. Cell, 84: 359–369. 10.1016/S0092-8674(00)81280-5 CASPubMedWeb of Science®Google Scholar Lewis, J. E., Wahl, J. K. II, Sass, K. M., Jensen, P. J., Johnson, K. R., and Wheelock, M. J. (1997) Cross talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol., 136: 919–934. 10.1083/jcb.136.4.919 CASPubMedWeb of Science®Google Scholar Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z., and Bissell, M. J. (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell. Biol., 139: 1861–1872. 10.1083/jcb.139.7.1861 CASPubMedWeb of Science®Google Scholar Lu, H., Mabilat, C., Yeh, P., Guitton, J.-D., Li, H., Pouchelet, M., Shoevaert, D., Legrand, Y., Soria, J. and Soria, C. (1996) Blockage of urokinase receptor reduces in vitro the motility and the deformability of endothelial cells. FEBS Lett., 380: 21–24. 10.1016/0014-5793(95)01540-X CASPubMedWeb of Science®Google Scholar Lyons, J. G., Birkedal-Hansen, B., Pierson, M. C., Whitelock, J. M., and Birkedal-Hansen, H. (1993) Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of Mr 95,000 type IV collagenase/gelatinase and interstitial fibroblasttype collagenase by rat mucosal keratinocytes. J. Biol. Chem., 268: 19143–19151. CASPubMedWeb of Science®Google Scholar MacDougall, J. R., and Matrisian, L. M. (1995) Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metast. Rev., 14: 351–362. 10.1007/BF00690603 CASPubMedWeb of Science®Google Scholar Mainiero, F., Pepe, A., Yeon, M., Ren, Y., and Giancotti, F. (1996) The intracellular functions of α6β4 integrin are regulated by EGF. J. Cell Biol., 134: 241–253. 10.1083/jcb.134.1.241 CASPubMedWeb of Science®Google Scholar Marchese, C., Rubin, J., Ron, D., Faggioni, A., Torrisi, M. R., Messina, A., Frati, L., and Aaronson, S. A. (1990) Human keratinocyte growth factor activity on proliferation and differentiation of human keratinocytes: differentiation response distinguishes KGF from EGF family. J. Cell Physiol., 144: 326–332. 10.1002/jcp.1041440219 CASPubMedWeb of Science®Google Scholar Marikovsky, M., Breuing, K., Liu, P. Y., Eriksson, E., Higashiyama, S., Farber, P., Abraham, J., and Klagsbrun, M. (1993) Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc. Natl. Acad. Sci. U.S.A., 90: 3889–3893. 10.1073/pnas.90.9.3889 CASPubMedWeb of Science®Google Scholar Marikovsky, M., Lavi, S., Pinkas-Kramarski, R., Karunagran, D., Liu, N., Wen, D., and Yarden, Y. (1995) ErbB-3 mediates differential mitogenic effects of NDF/heregulin isoforms on mouse keratinocytes. Oncogene, 10: 1403–1411. CASPubMedWeb of Science®Google Scholar Martin, P. (1997) Wound Healing: Aiming for perfect skin regeneration. Science, 276: 75–81. 10.1126/science.276.5309.75 CASPubMedWeb of Science®Google Scholar Matsumoto, K., Ziober, B. L., Yao, C. C., and Kramer, R. H. (1995) Growth factor regulation of integrin mediated motility. Cancer Metast. Rev., 14: 205–217. 10.1007/BF00690292 CASPubMedWeb of Science®Google Scholar McCawley, L. J., O'Brien, P., and Hudson, L. G. (1997) Overexpression of the EGF receptor contributes to enhanced ligand-mediated motility in keratinocytes. Endocrinology, 138: 1–7. CASWeb of Science®Google Scholar McCawley, L. J., Obrien, P., and Hudson, L. G. (1998) Epidermal growth factor (EGF) and scatter factor/hepatocyte growth factor (SF/HGF) mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J. Cell. Physiol., 176: 255–265. 10.1002/(SICI)1097-4652(199808)176:2 3.0.CO;2-N CASPubMedWeb of Science®Google Scholar Miettinen, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z., and Derynck, R. (1995) Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature, 376: 337–341. 10.1038/376337a0 CASPubMedWeb of Science®Google Scholar Monzon, R., McWilliams, N., and Hudson, L. G. (1996) Suppression of cornified envelope formation and Type I transglutaminase by epidermal growth factor (EGF) in neoplastic keratinocytes Endocrinology, 137: 1727–1734 10.1210/en.137.5.1727 CASPubMedWeb of Science®Google Scholar Mitra, R. S., Wrone-Smith, T., Simonian, P., Foreman, K. E., Nunez, G., and Nickoloff, B. J. (1997) Apoptosis in keratinocytes is not dependent on induction of differentiation. Lab. Invest., 76: 99–107. CASPubMedWeb of Science®Google Scholar Moroni, M. C., Willingham, M. C., and Beguinot, L (1992) EGF-R antisense RNA blocks expression of the epidermal growth factor receptor and suppresses the transforming phenotype of a human carcinoma cell line. J. Biol. Chem., 267: 2714–2722. CASPubMedWeb of Science®Google Scholar Moulin, V. (1995) Growth factors in skin wound healing. Eur. J. Cell Biol., 68: 1–7. CASPubMedWeb of Science®Google Scholar Nanney L. B. (1990) Epidermal and dermal effects of epidermal growth factor during wound repair. J. Invest. Dermatol., 94: 624–629. 10.1111/1523-1747.ep12876204 CASPubMedWeb of Science®Google Scholar Nanney, L. B., Magid, M., Stoscheck, C. M., and King, L. E. Jr. (1984) Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. J. Invest. Dermatol., 83: 385–393. 10.1111/1523-1747.ep12264708 CASPubMedWeb of Science®Google Scholar Nanney, L. B., Stoscheck, C. M., King, L. E. Jr., Underwood, R. A., and Holbrook, K. A. (1990) Immunolocalization of epidermal growth factor receptors in normal developing human skin. J. Invest. Dermatol., 94: 742–748. 10.1111/1523-1747.ep12874601 CASPubMedWeb of Science®Google Scholar Pena, J. C., Fuchs, E., and Thompson, C. B. (1997) Bcl-x expression influences keratinocyte survival but not terminal differentiation. Cell Growth Differ., 8: 619–629. CASPubMedWeb of Science®Google Scholar Peus, D., Hamacher, L., and Pittelkow, M. R. (1997) EGF-receptor tyrosine kinase inhibition induces keratinocyte growth arrest and terminal differentiation. J. Invest. Dermatol., 109: 751–756. 10.1111/1523-1747.ep12340759 CASPubMedWeb of Science®Google Scholar Piepkorn, M., Lo, C., and Plowman, G. (1994) Amphiregulin-dependent proliferation of cultured human keratinocytes: autocrine growth, the effects of exogenous recombinant cytokine, and apparent requirement for heparin-like glycosaminoglycans. J. Cell. Physiol., 159: 114–120. 10.1002/jcp.1041590115 CASPubMedWeb of Science®Google Scholar Piepkorn, M., Underwood, R. A., Henneman, C., and Smith, L. T. (1995) Expression of amphiregulin is regulated in cultured human keratinocytes and in developing fetal skin. J. Invest. Dermatol., 105: 802–809. 10.1111/1523-1747.ep12326567 CASPubMedWeb of Science®Google Scholar Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G., and Parks, W. C. (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J. Cell Biol., 137: 1445–1457. 10.1083/jcb.137.6.1445 CASPubMedWeb of Science®Google Scholar Pinkas-Kramarski, R., Soussan, L., Waterman, H., Levkowitz, G., Alroy, I., Klapper, L., Lavi, S., Seger, R., Ratzkin, B. J., Sela, M., and Yarden, Y. (1996) Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J., 15: 2452–2467. 10.1002/j.1460-2075.1996.tb00603.x CASPubMedWeb of Science®Google Scholar Pinkas-Kramarski, R., Lenferink, A. E. G., Bacus, S. S., Lyass, L., van de Poll, M. L. M., Klapper, L. N., Tzahar, E., Sela, M., van Zoelen, E. J. J., and Yarden, Y. (1998) The oncogenic erbB-2/erbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin. Oncogene, 16: 1249–1258. 10.1038/sj.onc.1201642 CASPubMedWeb of Science®Google Scholar Pittelkow, M. R., Cook, P. W., Shipley, G. D., Derynck, R., and Coffey, R. J. Jr. (1993) Autonomous growth of human keratinocytes requires epidermal growth factor receptor occupancy. Cell Growth Differ., 4: 513–521. CASPubMedWeb of Science®Google Scholar Ponec, M., Gibbs, S., Weerheim, A., Kempenaar, J., Mulder, A., and Mommaas, A. M., (1997) Epidermal growth factor and temperature regulate keratinocyte differentiaiton. Arch. Dermatol. Res., 289: 317–326. 10.1007/s004030050198 CASPubMedWeb of Science®Google Scholar Poumay, Y., and Pittelkow, M. R. (1995) Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J. Invest. Dermatol., 104: 271–276. 10.1111/1523-1747.ep12612810 CASPubMedWeb of Science®Google Scholar Riese, D. J., van Raaij, T. M., Plowman, G. D., Andrews, G. C., and Stern, D. F. (1995) The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol. Cell. Biol., 15: 5770–5776. 10.1128/MCB.15.10.5770 CASPubMedWeb of Science®Google Scholar Riese, D. J., Bermingham, Y., van Raaij, T. M., Buckley, S., Plowman, G. D., and Stern, D. F. (1996) Betacellulin activates the epidermal growth factor receptor and erbB4 and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene, 12: 345–353. CASPubMedWeb of Science®Google Scholar Robinson, M. J., and Cobb, M. H. (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol., 9: 180–186. 10.1016/S0955-0674(97)80061-0 CASPubMedWeb of Science®Google Scholar Rodeck, U., Jost, M., DuHadaway, J., Kari, C., Jensen, P. J., Risse, B., and Ewert, D. L. (1997a) Regulation of Bcl-xL expression in human keratinocytes by cell-substratum adhesion and the epidermal growth factor receptor. Proc. Natl. Acad. Sci. U.S.A., 94: 5067–5072 10.1073/pnas.94.10.5067 CASPubMedWeb of Science®Google Scholar Rodeck, U., Jost, M., Kari, C., Shih, D. T., Lavker, R. M., Ewert, D. L., and Jensen, P. J. (1997b) EGF-R dependent regulation of keratinocyte survival. J. Cell Sci., 110: 113–121. CASPubMedWeb of Science®Google Scholar Rømer, J., Bugge, T. H., Pyke, C., Lund, L. R., Flick, M. J., Degen, J. L., and Danø, K. (1996) Impaired wound healing in mice with dirupted plasminogen gene. Nature Med., 2: 287–292. 10.1038/nm0396-287 PubMedWeb of Science®Google Scholar Schaffer, C. J., and Nanney, L. B. (1996) Cell biology of wound healing. Int. Rev. Cytol., 169: 151–181. 10.1016/S0074-7696(08)61986-5 CASPubMedWeb of Science®Google Scholar Schultz, G. S., White, M., Mitchell, R., Brown, G., Lynch, J., Twardzik, D. R., and Todaro, G. J. (1987) Epithelial wound healing enhanced by transforming growth factor-alpha and vaccinia growth factor. Science, 235: 350–352. 10.1126/science.3492044 CASPubMedWeb of Science®Google Scholar Schultz G., Rotatori, D. S., and Clark, W. (1991) EGF and TGF-alpha in wound healing and repair. J. Cell. Biochem., 45: 346–352. 10.1002/jcb.240450407 CASPubMedWeb of Science®Google Scholar Seedorf, K. (1995) Intracellular signaling by growth factors. Metabolism: Clinical and Experimental 44: 24–32. 10.1016/0026-0495(95)90217-1 CASPubMedWeb of Science®Google Scholar Shibamoto, S., Hayakawa, M., Takeuchi, K., Hori, T., Oku, N., Miyazawa, K., Kitamura, N., Takeichi, M., and Ito, F. (1994). Tyrosine phosphorylation of □-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adh. Commun., 1: 295–305. 10.3109/15419069409097261 CASPubMedWeb of Science®Google Scholar Sibilia, M., and Wagner, E. F. (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science, 269: 234–238. 10.1126/science.7618085 CASPubMedWeb of Science®Google Scholar Solic, N., and Davies, D. E. (1997) Differential effects of EGF and amphiregulin on adhesion molecule expression and migration on colon carcinoma cells. Exp. Cell Res., 234: 465–476. 10.1006/excr.1997.3635 CASPubMedWeb of Science®Google Scholar Stafansson, S., and Lawrence, D. A. (1996) The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin. Nature, 383: 441–443. 10.1038/383441a0 CASPubMedWeb of Science®Google Scholar Stetler-Stevenson, W. G., Aznavoorian, S., and Liotta, L. A. (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann. Rev. Cell Biol. 9: 541–573. 10.1146/annurev.cb.09.110193.002545 CASPubMedWeb of Science®Google Scholar Stoscheck, C. M., Nanney, L. B., and King, L. E. Jr. (1992) Quantitative determination of EGF-R during epidermal wound healing. J. Invest. Dermatol., 99: 645–649. 10.1111/1523-1747.ep12668143 CASPubMedWeb of Science®Google Scholar Stoll, S., Garner, W., and Elder, J. (1997) Heparin-binding ligands mediate autocrine epidermal growth factor receptor activation in skin organ culture. J. Clin. Invest., 100: 1271–1281. 10.1172/JCI119641 CASPubMedWeb of Science®Google Scholar Stoll, S. W., Benedict, M., Mitra, R., Hiniker, A., Elder, J. T., and Nunez, G. (1998) EGF receptor signaling inhibits keratinocyte apoptosis: evidence for mediation by Bcl-XL. Oncogene, 16: 1493–1499. 10.1038/sj.onc.1201657 CASPubMedWeb of Science®Google Scholar Thiery, J. P., and Boyer, B. (1992) The junction between cytokines and cell adhesion. Curr. Op. Cell Biol., 4: 782–792. 10.1016/0955-0674(92)90101-H CASPubMedGoogle Scholar Threadgill, D. W., Dlugoz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., LaMant, C., Mourton, T., Herrup, K., Harris, R. C., Barnard, J. A., Yuspa, S. H., Coffey, R. J., and Magnuson, T. (1995) Targeted disruption of mouse EGF receptor: Effect of genetic background on mutant phenotype. Science, 269: 230–234. 10.1126/science.7618084 CASPubMedWeb of Science®Google Scholar Tsukita, S., Yonemura, S., and Tsukita, S. (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol., 9: 70–75. 10.1016/S0955-0674(97)80154-8 CASPubMedWeb of Science®Google Scholar Tzahar, E., and Yarden, Y (1998) The ErbB-1/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim. Biophys. Acta, 1377: M25–M37. 10.1016/S0304-419X(97)00032-2 CASPubMedWeb of Science®Google Scholar van der Geer, P., Hunter, T., and Lindberg, R. A. (1994) Receptor protein tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol., 10: 251–337. 10.1146/annurev.cb.10.110194.001343 CASPubMedWeb of Science®Google Scholar van der Heyden, M. A., Van Bergen en Henegouwen, P. M., de Ruiter, N., Verdaasdonk, M. A., van den Tweel, J. G., Rijksen, G., Boonstra, J., and Joling, P. (1997) The actin binding domain of the epidermal growth factor receptor is required for EGF-stimulated tissue invasion. Exp. Cell Res., 234: 521–526. 10.1006/excr.1997.3661 CASPubMedWeb of Science®Google Scholar Vassar, R., and Fuchs, E. (1991) Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev., 5: 714–727. 10.1101/gad.5.5.714 CASPubMedWeb of Science®Google Scholar Vassar, R., Hutton, M. E., and Fuchs, E. (1992) Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis. Mol. Cell. Biol., 12: 4643–4653. 10.1128/MCB.12.10.4643 CASPubMedWeb of Science®Google Scholar Wang, X. J., Greenhalgh, D. A., Eckhardt, J. M., Rothnagel, J. A., and Roop, D. R. (1994) Epidermal expression of transforming growth factor-alpha in transgenic mice: induction of spontaneous and 12-O-tetradecanoylphorbol-13-acetate-induced papillomas via a mechanism independent of Ha-ras activation or overexpression. Mol. Carcinogen., 10: 15–22. 10.1002/mc.2940100104 PubMedWeb of Science®Google Scholar Wang, X. J., Greenhalgh, D. A., Lu, X. R., Bickenbach, J. R., and Roop, D. R. (1995) TGFα and v-fos cooperation in transgenic mouse epidermis induces aberrant keratinocyte differentiation and stable, autonomous papillomas. Oncogene, 10: 279–289. CASPubMedWeb of Science®Google Scholar Watabe, M., Matsumoto, K., Nakamura, T., and Takeichi, M. (1993). Effect of hepatocyte growth factor on cadherin-mediated cell-cell adhesion. Cell Struct. Funct., 18: 117–124. 10.1247/csf.18.117 CASPubMedWeb of Science®Google Scholar Weichselbaum, R. R., Dunphy, E. J., Beckett, M. A., Tybor, A. G., Moran, W. J., Goldman, M. E., Vokes, E. E., and Panje, W. R. (1989) Epidermal growth factor receptor gene amplification and expression in head and neck cancer cell lines. Head Neck, 11: 437–442. 10.1002/hed.2880110510 PubMedWeb of Science®Google Scholar Wenczak, B. A., Lynch, J. B., and Nanney, L. B. (1992) Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair. J. Clin. Invest., 90: 2392–2401. 10.1172/JCI116130 CASPubMedWeb of Science®Google Scholar Werb, Z. (1997) ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91: 439–442 10.1016/S0092-8674(00)80429-8 CASPubMedWeb of Science®Google Scholar Winkles, J. A. (1998) Serum- and polypeptide growth factor-inducible gene expression in mouse fibroblasts. Prog. Nucleic Acid Res. Mol. Biol., 58: 41–78. 10.1016/S0079-6603(08)60033-1 CASPubMedWeb of Science®Google Scholar Yates, R. A., Nanney, L. B., Gates, R. E., and King, L. E. Jr (1991) Epidermal growth factor and related growth factors. Int. J. Dermatol., 30: 687–694. 10.1111/j.1365-4362.1991.tb02609.x CASPubMedWeb of Science®Google Scholar Yamada, K. M., and Geiger, B. (1997) Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol., 9: 76–85. 10.1016/S0955-0674(97)80155-X CASPubMedWeb of Science®Google Scholar Yebra, M., Parry, G. C. N., Strömblad, S., Mackman, N., Rosenberg, S., Mueller, B. M., and Cheresh, D. A. (1996) Requirement of receptorbound urokinase-type plaminogen activator for integrin αvβ5-directed cell migration. J. Biol. Chem., 271: 29393–29399. 10.1074/jbc.271.46.29393 CASPubMedWeb of Science®Google Scholar Zhang, K., Sun, J., Liu, N., Wen, D., Chang, D., Thomason, A., and Yoshinaga, S. K. (1996) Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2. J. Biol. Chem., 271: 3884–3890. 10.1074/jbc.271.7.3884 CASPubMedWeb of Science®Google Scholar Citing Literature Volume43, Issue5Special Issue:Cell Motility1 December 1998Pages 444-455 ReferencesRelatedInformation

Referência(s)