Infinite Integrals Containing Bessel Function Products

1964; Society for Industrial and Applied Mathematics; Volume: 12; Issue: 2 Linguagem: Inglês

10.1137/0112038

ISSN

2168-3484

Autores

W. C. Lindsey,

Tópico(s)

advanced mathematical theories

Resumo

Previous article Next article Infinite Integrals Containing Bessel Function ProductsWilliam C. LindseyWilliam C. Lindseyhttps://doi.org/10.1137/0112038PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] G. N. Watson, Theory of Bessel Functions, Cambridge University Press, 1958 Google Scholar[2A] Arthur Erdélyi, , Wilhelm Magnus, , Fritz Oberhettinger and , Francesco G. Tricomi, Higher transcendental functions. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953xxvi+302, xvii+396 MR0058756 (15,419i) 0051.30303 Google Scholar[2B] Arthur Erdélyi, , Wilhelm Magnus, , Fritz Oberhettinger and , Francesco G. Tricomi, Higher transcendental functions. Vol. II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953xxvi+302, xvii+396 MR0058756 (15,419i) 0052.29502 Google Scholar[3] W. C. Lindsey, An integral equation arising in multichannel communication performance characteristics, Space Programs Summary, No. 37-21, Vol. IV, Jet Propulsion Laboratory, Pasadena, California, 1963, May Google Scholar[4] B. Mohan, Infinite integrals involving Bessel functions. II, Bull. Calcutta Math. Soc., 34 (1942), 171–175 MR0009233 (5,120d) 0063.04053 Google Scholar[5] B. Mohan, Infinite integrals involving Struve's functions. II, Proc. Nat. Acad. Sci. India, 12 (1942), 231–235 MR0009671 (5,182b) 0063.04055 Google Scholar[6] S. Sinha, A few infinite integrals, J. Indian Math. Soc. (N.S.), 6 (1942), 103–104 MR0007456 (4,141d) 0063.07049 Google Scholar[7] S. Sinha, Some infinite integrals, Bull. Calcutta Math. Soc., 34 (1942), 67–77 MR0007457 (4,141e) 0063.07050 Google Scholar[8] Wolfgang Gröbner and , Nikolaus Hofreiter, Integraltafel. Zweiter Teil. Bestimmte Integrale, Springer-Verlag, Vienna and Innsbruck, 1950, 115–, pt. II MR0039023 (12,485b) Google Scholar[9] T. J. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, London, 1926 Google Scholar[10] C. W. Helstrom, Resolution of signals in white, Gaussian, noise, Proc. IRE, 43 (1955), 1111–1118 CrossrefISIGoogle Scholar[11] Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Volume 12, Issue 2| 1964Journal of the Society for Industrial and Applied Mathematics History Submitted:01 August 1963Accepted:20 December 1963Published online:28 July 2006 InformationCopyright © 1964 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0112038Article page range:pp. 458-464ISSN (print):0368-4245ISSN (online):2168-3484Publisher:Society for Industrial and Applied Mathematics

Referência(s)