Exploring Biophysical and Biochemical Components of the Osmotic Motor that Drives Stomatal Movement*

1988; Thieme Medical Publishers (Germany); Volume: 101; Issue: 4 Linguagem: Inglês

10.1111/j.1438-8677.1988.tb00046.x

ISSN

0932-8629

Autores

Klaus Raschke, Rainer Hedrich, Udo Reckmann, Julian I. Schroeder,

Tópico(s)

Plant and animal studies

Resumo

Botanica ActaVolume 101, Issue 4 p. 283-294 Exploring Biophysical and Biochemical Components of the Osmotic Motor that Drives Stomatal Movement* Prof. Dr. K. Raschke, Corresponding Author Prof. Dr. K. Raschke Pflanzenphysiologisches Institut und Botanischer Garten der Universität Göttingen, Bundesrepublik DeutschlandPflanzenphysiologisches Institut Untere Karspüle 2 D-3400 Göttingen Bundesrepublik DeutschlandSearch for more papers by this authorR. Hedrich, R. Hedrich Pflanzenphysiologisches Institut und Botanischer Garten der Universität Göttingen, Bundesrepublik DeutschlandSearch for more papers by this authorU. Reckmann, U. Reckmann Pflanzenphysiologisches Institut und Botanischer Garten der Universität Göttingen, Bundesrepublik DeutschlandSearch for more papers by this authorJ. I. Schroeder, J. I. Schroeder Max-Planck-Institut für Biophysikalische Chemie, Abt. Membranbiophysik, Göttingen, Bundesrepublik Deutschland Present address: UCLA School of Medicine, J. Lewis Research Center, UCLA, Los Angeles, California 90024, USA.Search for more papers by this author Prof. Dr. K. Raschke, Corresponding Author Prof. Dr. K. Raschke Pflanzenphysiologisches Institut und Botanischer Garten der Universität Göttingen, Bundesrepublik DeutschlandPflanzenphysiologisches Institut Untere Karspüle 2 D-3400 Göttingen Bundesrepublik DeutschlandSearch for more papers by this authorR. Hedrich, R. Hedrich Pflanzenphysiologisches Institut und Botanischer Garten der Universität Göttingen, Bundesrepublik DeutschlandSearch for more papers by this authorU. Reckmann, U. Reckmann Pflanzenphysiologisches Institut und Botanischer Garten der Universität Göttingen, Bundesrepublik DeutschlandSearch for more papers by this authorJ. I. Schroeder, J. I. Schroeder Max-Planck-Institut für Biophysikalische Chemie, Abt. Membranbiophysik, Göttingen, Bundesrepublik Deutschland Present address: UCLA School of Medicine, J. Lewis Research Center, UCLA, Los Angeles, California 90024, USA.Search for more papers by this author First published: November 1988 https://doi.org/10.1111/j.1438-8677.1988.tb00046.xCitations: 61 ‡ Presented at the symposium in memorial of Wilhelm Pfeffer in Blaubeuren (3.–5.6. 1987), see Guest Editorial in No. 2, Vol. 101. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Allaway, W. G. Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta 110 (1973), 63–70. 10.1007/BF00386923 CASPubMedWeb of Science®Google Scholar Assmann, S. M., Simoncini, L., and Schroeder, J. I. Blue light activates electrogenic ion pumps in guard cell protoplasts of Vicia faba. Nature 318 (1985), 285–287. 10.1038/318285a0 CASWeb of Science®Google Scholar Bennett, A. B., and Spanswick, R. M. H+-ATPase activity from storage tissue of Beta vulgaris. Plant Physiol. 74 (1984), 545–548. 10.1104/pp.74.3.545 CASPubMedWeb of Science®Google Scholar Coyaud, A., Kurkdjian, A., Kado, R., and Hedrich, R. Ion channels and ATP driven pumps involved in ion transport across the tonoplast of sugarbeet vacuoles. Biochim. Biophys. Acta 902 (1987) 263–268. 10.1016/0005-2736(87)90304-X CASWeb of Science®Google Scholar Davies, D. D. The central role of phosphoenolpyruvate in plant metabolism. Ann. Rev. Plant Phys. 30 (1979), 131–158. 10.1146/annurev.pp.30.060179.001023 CASWeb of Science®Google Scholar De Silva, D. L. R., Cox, R. C., Hetherington, A. M., and Mansfield, T. A. Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid. New Phytol. 101 (1985a), 555–563. 10.1111/j.1469-8137.1985.tb02861.x Google Scholar De Silva, D. L. R., Hetherington, A. M., and Mansfield, T. A. Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol. 100 (1985b), 473–483. 10.1111/j.1469-8137.1985.tb02795.x CASWeb of Science®Google Scholar Donkin, M., and Martin, E. S. Studies on the properties of carboxylating enzymes in the epidermis of Commelina communis. J. exp. Botany 31 (1980), 357–363. 10.1093/jxb/31.2.357 CASWeb of Science®Google Scholar Donkin, M. E., Taffs, J., and Martin, E. S. A study of the in-vitro regulation of phosphoenolpyruvate carboxylase from the epidermis of Commelina communis by malate and glucose-6-phosphate. Planta 155 (1982), 416–422. 10.1007/BF00394470 CASPubMedWeb of Science®Google Scholar Gonzales, D. H., Iglesias, A. A., and Andreo, C. S. On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by XXXXlYYYY-malate. Effect of pH. J. Plant Physiol. 116 (1984), 425–434. 10.1016/S0176-1617(84)80134-0 PubMedWeb of Science®Google Scholar Gotow, K., Tanaka, K., Kondo, N., Kobayashi, K., and Syōno, K. Light activation of NADP-Malate-dehydrogenase in guard cell protoplasts from Vicia faba L. Plant Physiol. 79 (1985), 829–832. 10.1104/pp.79.3.829 CASPubMedWeb of Science®Google Scholar Gotow, K., Taylor, S., and Zeiger, E. Photosynthetic carbon fixation in guard cell protoplasts of Vicia faba L. Plant Physiol. 86 (1988), 700–705. 10.1104/pp.86.3.700 CASPubMedWeb of Science®Google Scholar Guern, J., Mathieu, Y., and Kurkdjian, A. Phosphoenolpyruvate carboxylase activity and the regulation of intracellular pH in plant cells. Physiol. Vég. 21 (1983), 855–866. CASWeb of Science®Google Scholar Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. Improved patch clamp techniques for high-resolution current recordings from cells and cell-free membrane patches. Pflügers Arch. 391 (1981), 85–100. 10.1007/BF00656997 CASPubMedWeb of Science®Google Scholar Hedrich, R., Barbier-Brygoo, H., Felle, H., Flügge, U. I., Lüttge, U., Maathuis, F. J. M., Marx, S., Prins, H. B. A., Raschke, K., Schnabl, H., Schroeder, J. I., Struve, I., Taiz, L., and Ziegler, P. General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps. Botanica Acta 101 (1988), 7–13. 10.1111/j.1438-8677.1988.tb00003.x CASWeb of Science®Google Scholar Hedrich, R., Flügge, U. I., and Fernandez, J. M. Patch clamp studies of ion transport in isolated plant vacuoles. FEBS Letters 204 (1986), 228–232. 10.1016/0014-5793(86)80817-1 CASWeb of Science®Google Scholar Hedrich, R., and Neher, E. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329 (1987), 833–835. 10.1038/329833a0 Web of Science®Google Scholar Hedrich, R., Raschke, K., and Stitt, M. A role for fructose 2,6-bisphosphate in regulating carbohydrate metabolism in guard cells. Plant Physiol. 79 (1985), 977–982. 10.1104/pp.79.4.977 CASPubMedWeb of Science®Google Scholar Hedrich, R., Schroeder, J. I., and Fernandez, J. M. Patch-clamp studies on higher plant cells: a perspective. TIBS 12 (1987), 49–52. 10.1016/0968-0004(87)90025-9 CASWeb of Science®Google Scholar Humble, G. D., and Raschke, K. Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Plant Physiol. 48 (1971), 447–453. 10.1104/pp.48.4.447 CASPubMedWeb of Science®Google Scholar Jones, R. W., Principles of biological regulation. An introduction to feedback systems. 359 p. Academic Press. New York and London, 1973. Google Scholar Kacser, H., and Burns, J. A. The control of flux. Symp. Soc. Exp. Biol. 27 (1973), 65–104. CASPubMedWeb of Science®Google Scholar Karabourniotis, G., Manetas, Y., and Gavalas, N. A. Photoregulation of phosphoenolpyruvate carboxylase in Salsola soda L. and other C4 plants. Plant Physiol. 73 (1983), 735–739. 10.1104/pp.73.3.735 CASPubMedWeb of Science®Google Scholar Karabourniotis, G., Manetas, Y., and Gavalas, N. A. Detecting photoactivation of phosphoenolpyruvate carboxylase in C4 plants. Plant Physiol. 77 (1985), 300–302. 10.1104/pp.77.2.300 CASPubMedWeb of Science®Google Scholar Kluge, M., Brulfert, J., and Queiroz, O. Diurnal changes in the regulatory properties of PEP-carboxylase in crassulacean acid metabolism (CAM). Plant, Cell and Environm. 4 (1981), 251–256. 10.1111/1365-3040.ep11611032 CASWeb of Science®Google Scholar Kottmeier, Ch., and Schnabl, H. The Km-value of phosphoenolpyruvate carboxylase as an indicator of the swelling state of guard cell protoplasts. Plant Science 43 (1986), 213–217. 10.1016/0168-9452(86)90020-8 CASWeb of Science®Google Scholar Martinoia, E., Flügge, U. I., Kaiser, G., Heber, U., and Heldt, H. W. Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts. Biochim. et Biophys. Acta 806 (1985), 311–319. 10.1016/0005-2728(85)90110-0 CASWeb of Science®Google Scholar Martinoia, E., Schramm, M. J., Kaiser, G., Kaiser, W. M., and Heber, U. Transport of anions in isolated barley vacuoles. Plant Physiol. 80 (1986), 859–901. 10.1104/pp.80.4.895 Web of Science®Google Scholar Neher, E., and Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260 (1976), 779–802. 10.1038/260799a0 CASWeb of Science®Google Scholar Ogawa, T. Synergistic action of red and blue light on stomatal opening of Vicia faba leaves. In H. Senger, ed., The blue light syndrome, pp. 621–628. Springer-Verlag Berlin—Heidelberg–New York, 1980. Google Scholar O'Leary, M. H. Phosphoenolpyruvate carboxylase: An enzymologist's view. Ann. Rev. Plant Phys. 33 (1982), 297–315. 10.1146/annurev.pp.33.060182.001501 CASWeb of Science®Google Scholar Outlaw, W. H. jr., Manchester, J., DiCamelli, C. A., Randall, D. D., Rapp, B., and Veith, G. M. Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. Proc. Natl. Acad. Sci. USA 76 (1979), 6371–6375. 10.1073/pnas.76.12.6371 CASPubMedWeb of Science®Google Scholar Palevitz, B. A., and Hepler, P. K. Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of lucifer yellow. Planta 164 (1985), 473–479. 10.1007/BF00395962 CASPubMedWeb of Science®Google Scholar Pfanz, H., and Heber, U. Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol. 81 (1986), 597–602. 10.1104/pp.81.2.597 CASPubMedWeb of Science®Google Scholar Pfeffer, W. Pflanzenphysiologie. Ein Handbuch der Lehre vom Stoffwechsel in der Pflanze. 620 p. Verlag von Wilhelm Engelmann. Leipzig, 1897. Google Scholar Ranjeva, R., Carrasco, A., and Boudet, A. M. Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells. FEBS Letters 230 (1988), 137–141. 10.1016/0014-5793(88)80657-4 CASWeb of Science®Google Scholar Raschke, K. Movements of stomata. In W. Haupt, E. Feinleib, eds., Physiology of Movements. (Encyclopedia of Plant Physiology; new ser., vol. 7). pp. 383–441 Springer-Verlag, Berlin—Heidelberg–New York, 1979. Google Scholar Raschke, K., and Dittrich, P. 14C carbon-dioxide fixation by isolated epidermes with stomata closed or open. Planta 134 (1977), 69–75. 10.1007/BF00390097 CASPubMedWeb of Science®Google Scholar Raschke, K., and Fellows, M. P. Stomatal movement in Zea mays: Shuttle of potassium and chloride between guard cells and subsidiary cells. Planta 101 (1971), 296–316. 10.1007/BF00398116 CASPubMedWeb of Science®Google Scholar Raschke, K., and Hedrich, R. Patch-clamp measurements on isolated guard-cell protoplasts and vacuoles. In S. Fleischer and B. Fleischer, eds., Methods in Enzymology: Biomembranes, Part M: Biological Transport 4, Cellular and Subcellular Transport. Academic Press, Orlando, Florida, in press. Google Scholar Schnabl, H. CO2 and malate metabolism in starch-containing and starch-lacking guard-cell protoplasts. Planta 149 (1980), 52–58. 10.1007/BF00386227 CASPubMedWeb of Science®Google Scholar Schnabl, H., Bornman, C. H., and Ziegler, H. Studies on isolated starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cell protoplasts. Planta 143 (1978), 33–39. 10.1007/BF00389049 CASPubMedWeb of Science®Google Scholar Schnabl, H., and Kottmeier, C. Determination of malate levels during the swelling of vacuoles isolated from guard-cell protoplasts. Planta 161 (1984a), 27–31. 10.1007/BF00951456 CASPubMedWeb of Science®Google Scholar Schnabl, H., and Kottmeier, C. Properties of phosphoenolpyruvate carboxylase in desalted extracts from isolated guard-cell protoplasts. Planta 162 (1984b), 220–225. 10.1007/BF00397443 CASPubMedWeb of Science®Google Scholar Schnabl, H., and Raschke, K. Potassium chloride as stomatal osmoticum in Allium cepa L., a species devoid of starch in guard cells. Plant Physiol. 65 (1980), 88–93. 10.1104/pp.65.1.88 CASPubMedWeb of Science®Google Scholar Schnabl, H., and Ziegler, H. The mechanism of stomatal movement in Allium cepa L. Planta 136 (1977), 37–43. 10.1007/BF00387922 CASPubMedWeb of Science®Google Scholar Schroeder, J. I. K+-Kanäle in der Plasmamembran von Schließzellen. Eine patch-clamp Untersuchung molekularer Mechanismen des K+-Transports in höheren Pflanzenzellen. Diss., 101 p., Göttingen, 1987. Google Scholar Schroeder, J. I., Hedrich, R., and Fernandez, J. M. Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312 (1984), 361–362. 10.1038/312361a0 CASWeb of Science®Google Scholar Schroeder, J. I., Raschke, K., and Neher, E. Voltage dependence of K+ channels in guard-cell protoplasts. Proc. Natl. Acad. Sci. USA 84 (1987), 4108–4112. 10.1073/pnas.84.12.4108 CASPubMedWeb of Science®Google Scholar Schumaker, K., and Sze, H. Decrease of pH gradients in tonoplast vesicles by NO3− and Cl−: evidence for H+-coupled anion transport. Plant Physiol. 83 (1987), 490–496. 10.1104/pp.83.3.490 CASPubMedWeb of Science®Google Scholar Serrano, E. E., Zeiger, E., and Hagiwara, S. Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc. Natl. Acad. Sci. USA 85 (1988), 436–440. 10.1073/pnas.85.2.436 CASPubMedWeb of Science®Google Scholar Smith, F. A., and Raven, J. A. Intracellular pH and its regulation. Ann. Rev. Plant Phys. 30 (1979), 289–311. 10.1146/annurev.pp.30.060179.001445 CASWeb of Science®Google Scholar Sze, H. H+-translocating ATPases: advances using membrane vesicles. Ann. Rev. Plant Physiol. 36 (1985), 175–208. CASWeb of Science®Google Scholar Willmer, C. M. Phosphoenolpyruvate carboxylase activity and stomatal operation. Physiol. Vég. 21 (1983), 943–953. CASWeb of Science®Google Scholar Zeiger, E., and Hepler, P. K. Production of guard cell protoplasts from onion and tobacco. Plant Physiol. 58 (1976), 492–498. 10.1104/pp.58.4.492 CASPubMedWeb of Science®Google Scholar Citing Literature Volume101, Issue4November 1988Pages 283-294 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX