Artigo Revisado por pares

A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles

2012; Elsevier BV; Volume: 230; Linguagem: Inglês

10.1016/j.jpowsour.2012.12.057

ISSN

1873-2755

Autores

Jiahao Li, Joaquín Klee Barillas, Clemens Guenther, Michael A. Danzer,

Tópico(s)

Advanced Battery Materials and Technologies

Resumo

One of the most important aspects in battery management systems (BMS) in electric vehicles is the state of charge (SOC) estimation. SOC needs to be accurately determined for safety and performance reasons but cannot be measured directly due to the flatness and hysteresis of the open circuit voltage (OCV) curve of Lithium-ion chemistries as LiFePO4. The classical approach of current integration (Coulomb counting) cannot solve the problems of accumulative error and inaccurate initial values, thus advanced estimation algorithms are applied to determine the sate of charge. In this work, three model-based state observer designs including Luenberger observer, Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF) are carried out and studied. These estimation approaches are verified using measurement data acquired from commercial LiFePO4 cells. In addition, computational tests analyze the systems performances in terms of tracking accuracy, estimation robustness against temperature uncertainty, sensor drift, and convergence behavior with an initial SOC offset.

Referência(s)
Altmetric
PlumX