Artigo Revisado por pares

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors

2013; American Chemical Society; Volume: 7; Issue: 7 Linguagem: Inglês

10.1021/nn401948e

ISSN

1936-086X

Autores

Yen-Chia Chen, Dimas G. de Oteyza, Zahra Pedramrazi, Chen Chen, Felix R. Fischer, Michael F. Crommie,

Tópico(s)

2D Materials and Applications

Resumo

A prerequisite for future graphene nanoribbon (GNR) applications is the ability to fine-tune the electronic band gap of GNRs. Such control requires the development of fabrication tools capable of precisely controlling width and edge geometry of GNRs at the atomic scale. Here we report a technique for modifying GNR band gaps via covalent self-assembly of a new species of molecular precursors that yields n = 13 armchair GNRs, a wider GNR than those previously synthesized using bottom-up molecular techniques. Scanning tunneling microscopy and spectroscopy reveal that these n = 13 armchair GNRs have a band gap of 1.4 eV, 1.2 eV smaller than the gap determined previously for n = 7 armchair GNRs. Furthermore, we observe a localized electronic state near the end of n = 13 armchair GNRs that is associated with hydrogen-terminated sp(2)-hybridized carbon atoms at the zigzag termini.

Referência(s)
Altmetric
PlumX