A posteriori error estimators for the steady incompressible Navier-Stokes equations
1997; Wiley; Volume: 13; Issue: 5 Linguagem: Inglês
10.1002/(sici)1098-2426(199709)13
ISSN1098-2426
AutoresDaniela Arnica, Claudio Padra,
Tópico(s)Electromagnetic Simulation and Numerical Methods
ResumoNumerical Methods for Partial Differential EquationsVolume 13, Issue 5 p. 561-574 A posteriori error estimators for the steady incompressible Navier–Stokes equations Daniela Arnica, Daniela Arnica Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Rio Negro, Argentina Instituto Balseiro, Universidad Nacional de Cuyo and C.N.E.A.Search for more papers by this authorClaudio Padra, Corresponding Author Claudio Padra Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Rio Negro, Argentina Instituto Balseiro, Universidad Nacional de Cuyo and C.N.E.A.Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Rio Negro, ArgentinaSearch for more papers by this author Daniela Arnica, Daniela Arnica Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Rio Negro, Argentina Instituto Balseiro, Universidad Nacional de Cuyo and C.N.E.A.Search for more papers by this authorClaudio Padra, Corresponding Author Claudio Padra Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Rio Negro, Argentina Instituto Balseiro, Universidad Nacional de Cuyo and C.N.E.A.Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Rio Negro, ArgentinaSearch for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1098-2426(199709)13:5 3.0.CO;2-HCitations: 7AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A residual-based a posteriori error estimator for finite element discretizations of the steady incompressible Navier–Stokes equations in the primitive variable formulation is discussed. Though the estimator is similar to existing ones, an alternate derivation is presented, involving an abstract estimate that may prove of some intrinsic value. The estimator is particularized to Hood–Taylor and modified Hood–Taylor finite elements and proved to be a global upper bound (up to a positive multiplicative constant) of the true error. Numerical examples are provided to illustrate the performance of the resulting mesh adaptation process. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 561–574, 1997 References 1 R. E. Bank, B. Welfert, "A posteriori error estimates for the Stokes equations: A comparison," Comp. Meth. Appl. Mech. Eng. 82, 323–340 (1990). 10.1016/0045-7825(90)90170-Q Web of Science®Google Scholar 2 R. E. Bank, B. Welfert, "A posteriori error estimates for the Stokes problem," SIAM J. Numer. Anal. 28, 591–623 (1991). 10.1137/0728033 Web of Science®Google Scholar 3 J. Baranger, H. El Amri, "Estimateurs a posteriori d'erreur pour le calcul adaptif d'écoulements quasi-Newtoniens," Math. Mod. and Numer. Anal. 25, 31–48 (1991). 10.1051/m2an/1991250100311 Web of Science®Google Scholar 4 E. Dari, R. Durán, C. Padra, "A posteriori error estimators for the non-conforming Stokes discretizations," Math. Comp., to appear. Google Scholar 5 J. T. Oden, L. Demkowicz, "h–p adaptive finite element methods in computational fluid dynamics," Comput. Methods Appl. Mech. Engrg. 89, 11–40 (1991). 10.1016/0045-7825(91)90035-5 Web of Science®Google Scholar 6 C. Padra, G. C. Buscaglia, E. A. Dari, " Adaptivity in steady incompressible Navier–Stokes computations using discontinuous pressure interpolants," in Num. Meth. in Eng. and Appl. Sc. Part I, H. Alder, J. C. Heinrich, S. Lavanchy, E. Oñate, B. Su'arez, Eds., CIMNE, Barcelona, pp. 267–276, 1992. Google Scholar 7 J. Wu, J. Z. Zhu, J. Szmelter, O. C. Zienkiewicz, "Error estimation and adaptivity in Navier–Stokes incompressible flows," Comp. Mechanics 6, 259–270 (1990). 10.1007/BF00370106 Google Scholar 8 R. Verfürth, "A posteriori error estimators for the Stokes equations," Numer. Math. 55, 309–325 (1989). 10.1007/BF01390056 Web of Science®Google Scholar 9 R. Verfürth, " A posteriori error estimators and adaptive mesh-refinement techniques for the Navier–Stokes equations," in Incompressible Computational Fluid Dynamics, Trends and Advances, M. Gunzburger and R. A. Nicolaides, Eds., Cambridge University Press, pp. 447–477, 1993. 10.1017/CBO9780511574856.015 Google Scholar 10 R. Verfürth, "A posteriori error estimates for non-linear problems. Finite element discretizations of elliptic equations," Math. Comp. 62, 445–475 (1994). 10.2307/2153518 Web of Science®Google Scholar 11 J. T. Oden, W. Wu, and M. Ainsworth, "An a posteriori error estimate for finite element approximations of the Navier–Stokes equations," Comput. Methods Appl. Mech. Engrg. 111, 185–202 (1994). 10.1016/0045-7825(94)90045-0 Web of Science®Google Scholar 12 R. Temam, Navier–Stokes Equations, North–Holland, Amsterdam, 1984. Google Scholar 13 R. Temam, "Sur l'approximation des solutions des équations de Navier–Stokes," C. R. Acad. Sc. Paris, 262, 219–221 (1966). Web of Science®Google Scholar 14 P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam, 1978. 10.1016/S0168-2024(08)70178-4 Google Scholar 15 V. Girault, and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer–Verlag, Berlin/Heidelberg, 1986. 10.1007/978-3-642-61623-5 Google Scholar 16 P. Clément, "Approximation by finite element function using local regularization," RAIRO R-2, 77–84 (1975). Google Scholar 17 M. C. Rivara, "Mesh refinement processes based on the generalized bisection of simplices," SIAM J. Numer. Anal. 21, 604–613 (1984). 10.1137/0721042 Web of Science®Google Scholar 18 G. C. Buscaglia, " NSNEWT: A Galerkin finite element method for the incompressible Navier–Stokes equations," Informe Técnico CNEA-CAB 91/024. Google Scholar Citing Literature Volume13, Issue5September 1997Pages 561-574 ReferencesRelatedInformation
Referência(s)