Artigo Revisado por pares

The Specificity of Food-Plants in the Evolution of Phytophagous Insects

1924; University of Chicago Press; Volume: 58; Issue: 655 Linguagem: Inglês

10.1086/279965

ISSN

1537-5323

Autores

Charles T. Brues,

Tópico(s)

Ecology and Vegetation Dynamics Studies

Resumo

Previous articleNext article FreeThe Specificity of Food-Plants in the Evolution of Phytophagous InsectsCharles T. BruesCharles T. BruesPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 58, Number 655Mar. - Apr., 1924 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/279965 Views: 132Total views on this site Citations: 77Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Joan C. Hinojosa, Cecilia Montiel‐Pantoja, Miguel Sanjurjo‐Franch, Isabel Martínez‐Pérez, Kyung Min Lee, Marko Mutanen, Roger Vila Diversification linked to larval host plant in the butterfly Eumedonia eumedon, Molecular Ecology (Oct 2022).https://doi.org/10.1111/mec.16728S. Augusta Maccracken, Ian M. Miller, Kirk R. Johnson, Joseph M. Sertich, Conrad C. Labandeira, Daniel Peppe Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA), PLOS ONE 17, no.11 (Jan 2022): e0261397.https://doi.org/10.1371/journal.pone.0261397Eduardo Soares Calixto, Philip G. Hahn Plant–Herbivorous Insect Interactions in Forest Ecosystems: Overview and Perspectives to Mitigate Losses, (May 2022): 163–186.https://doi.org/10.1007/978-981-19-0071-6_8Michael S. Singer, Riley M. Anderson, Andrew B. Hennessy, Emily Leggat, Aditi Prasad, Sydnie Rathe, Benjamin Silverstone, Tyler J. Wyatt Predators and Caterpillar Diet Breadth: Appraising the Enemy-Free Space Hypothesis, (Apr 2022): 273–296.https://doi.org/10.1007/978-3-030-86688-4_9Robert J. Marquis, Suzanne Koptur Synopsis and the Future of Caterpillar Research, (Apr 2022): 609–622.https://doi.org/10.1007/978-3-030-86688-4_20Ellen D. Currano, Lauren E. Azevedo-Schmidt, S. Augusta Maccracken, Anshuman Swain Scars on fossil leaves: An exploration of ecological patterns in plant–insect herbivore associations during the Age of Angiosperms, Palaeogeography, Palaeoclimatology, Palaeoecology 582 (Nov 2021): 110636.https://doi.org/10.1016/j.palaeo.2021.110636Michael C. Singer, Camille Parmesan Colonizations cause diversification of host preferences: A mechanism explaining increased generalization at range boundaries expanding under climate change, Global Change Biology 27, no.1515 (Jun 2021): 3505–3518.https://doi.org/10.1111/gcb.15656Shinichi Nakahara, Pável Matos-Maraví, Johanna Schwartz, Keith R. Willmott Assessing a generic synapomorphy of Pseudodebis Forster, 1964 (Lepidoptera : Nymphalidae : Satyrinae) and a recent speciation with a shift in elevation between two new species in the western Andes, Invertebrate Systematics 60 (Jan 2021).https://doi.org/10.1071/IS20024S. Augusta Maccracken and Conrad C. Labandeira The Middle Permian South Ash Pasture Assemblage of North-Central Texas: Coniferophyte and Gigantopterid Herbivory and Longer-Term Herbivory Trends, International Journal of Plant Sciences 181, no.33 (Feb 2020): 342–362.https://doi.org/10.1086/706852Salvatore J. Agosta, Daniel R. Brooks Neo-Darwinism, Expansion, and Consolidation (1900–1980), (Aug 2020): 45–85.https://doi.org/10.1007/978-3-030-52086-1_4Eunice Kariñho-Betancourt Coevolution: Plant-Herbivore Interactions and Secondary Metabolites of Plants, (Feb 2020): 47–76.https://doi.org/10.1007/978-3-319-96397-6_41Eunice Kariñho-Betancourt Coevolution: Plant-herbivore interactions and secondary metabolites of plants, (Jan 2019): 1–31.https://doi.org/10.1007/978-3-319-76887-8_41-1Qingqing Xu, Jianhua Jin, Conrad C. Labandeira Williamson Drive: Herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counterdefenses, Review of Palaeobotany and Palynology 251 (Apr 2018): 28–72.https://doi.org/10.1016/j.revpalbo.2018.01.002Conrad C. Labandeira, John M. Anderson, Heidi M. Anderson Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall, (Nov 2017): 623–719.https://doi.org/10.1007/978-3-319-68009-5_14Sandra R. Schachat, Conrad C. Labandeira, Dan S. Chaney Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: Opportunism in a balanced component community, Palaeogeography, Palaeoclimatology, Palaeoecology 440 (Dec 2015): 830–847.https://doi.org/10.1016/j.palaeo.2015.10.001Diego Carmona, Connor R. Fitzpatrick, Marc T. J. Johnson Fifty years of co-evolution and beyond: integrating co-evolution from molecules to species, Molecular Ecology 24, no.2121 (Oct 2015): 5315–5329.https://doi.org/10.1111/mec.13389Tomasz Suchan, Nadir Alvarez Fifty years after Ehrlich and Raven, is there support for plant–insect coevolution as a major driver of species diversification?, Entomologia Experimentalis et Applicata 157, no.11 (Sep 2015): 98–112.https://doi.org/10.1111/eea.12348Nash E. Turley, Marc T. J. Johnson Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants, Oecologia 178, no.33 (Mar 2015): 747–759.https://doi.org/10.1007/s00442-015-3276-8N.K. Bhatia, Mohd. Yousuf Effects of forestry host plants, rearing seasons and their interaction on cocoon productivity of tropical tasar silkworm, Antheraea mylitta in uttarakhand, International Journal of Industrial Entomology 30, no.22 (Jun 2015): 31–39.https://doi.org/10.7852/ijie.2015.30.2.31Sandra R. Schachat, Conrad C. Labandeira, Jessie Gordon, Dan Chaney, Stephanie Levi, Maya N. Halthore, and Jorge Alvarez Plant-Insect Interactions from Early Permian (Kungurian) Colwell Creek Pond, North-Central Texas: The Early Spread of Herbivory in Riparian Environments, International Journal of Plant Sciences 175, no.88 (Jul 2015): 855–890.https://doi.org/10.1086/677679Narendra Kumar Bhatia, Mohammad Yousuf Effect of rearing season, host plants and their interaction on economical traits of tropical tasar silkworm, Antheraea mylitta Drury- an overview, International Journal of Industrial Entomology 29, no.11 (Sep 2014): 93–119.https://doi.org/10.7852/ijie.2014.29.1.93John N. Thompson Natural Selection, Coevolution, and the Web of Life., The American Naturalist 183, no.11 (Jul 2015): iv–v.https://doi.org/10.1086/674238Aaron M. Dickey, Raul F. Medina Host-associated genetic differentiation in pecan leaf phylloxera, Entomologia Experimentalis et Applicata 143, no.22 (Apr 2012): 127–137.https://doi.org/10.1111/j.1570-7458.2012.01250.xKailen A. Mooney, Riley T. Pratt, Michael S. Singer, Jon Moen The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores, PLoS ONE 7, no.44 (Apr 2012): e34403.https://doi.org/10.1371/journal.pone.0034403 10.1007/BF00194712, CrossRef Listing of Deleted DOIs 58 (Jan 2011).https://doi.org/10.1007/BF00194712 10.1007/BF00347708, CrossRef Listing of Deleted DOIs 22 (Jan 2011).https://doi.org/10.1007/BF00347708 10.1007/BF02385132, CrossRef Listing of Deleted DOIs 54 (Jan 2011).https://doi.org/10.1007/BF02385132Matthew L. Forister, Chris C. Nice, James A. Fordyce, Zachariah Gompert Host range evolution is not driven by the optimization of larval performance: the case of Lycaeides melissa (Lepidoptera: Lycaenidae) and the colonization of alfalfa, Oecologia 160, no.33 (Mar 2009): 551–561.https://doi.org/10.1007/s00442-009-1310-4S.S. Schooler, P.B. McEvoy, P. Hammond, E.M. Coombs Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea , on the moth diversity of wetland communities, Bulletin of Entomological Research 99, no.33 (Oct 2008): 229–243.https://doi.org/10.1017/S0007485308006251Eric P. Hoberg, Daniel R. Brooks A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems, Journal of Biogeography 35, no.99 (Sep 2008): 1533–1550.https://doi.org/10.1111/j.1365-2699.2008.01951.xDaniel R. Brooks, Marco G. P. van Veller Assumption 0 Analysis: Comparative Phylogenetic Studies in the Age of Complexity 1,2,3, Annals of the Missouri Botanical Garden 95, no.22 (Jun 2008): 201–223.https://doi.org/10.3417/2006017CONRAD LABANDEIRA The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods, Insect Science 14, no.44 (Jun 2007): 259–275.https://doi.org/10.1111/j.1744-7917.2007.00141.x-i1M. L. FORISTER, A. G. EHMER, D. J. FUTUYMA The genetic architecture of a niche: variation and covariation in host use traits in the Colorado potato beetle, Journal of Evolutionary Biology 20, no.33 (May 2007): 985–996.https://doi.org/10.1111/j.1420-9101.2007.01310.xConrad C. Labandeira, Emily G. Allen Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic floras, Palaeogeography, Palaeoclimatology, Palaeoecology 247, no.3-43-4 (Apr 2007): 197–219.https://doi.org/10.1016/j.palaeo.2006.10.015 References, (Jan 2007): 237–286.https://doi.org/10.1016/B978-044452736-3/50009-XFariba Mozaffarian, Alimorad Sarafrazi, Gadir Nouri Ganbalani Host Plant-Associated Population Variation in the Carob Moth Ectomyelois ceratoniae in Iran: A Geometric Morphometric Analysis Suggests a Nutritional Basis., Journal of Insect Science 7, no.22 (Jan 2007): 1–11.https://doi.org/10.1673/031.007.0201Daniel R. Brooks, Amanda L. Ferrao The historical biogeography of co-evolution: emerging infectious diseases are evolutionary accidents waiting to happen, Journal of Biogeography 32, no.88 (Jul 2005): 1291–1299.https://doi.org/10.1111/j.1365-2699.2005.01315.xPAULO INÁCIO PRADO, THOMAS MICHAEL LEWINSOHN Compartments in insect–plant associations and their consequences for community structure, Journal of Animal Ecology 73, no.66 (Oct 2004): 1168–1178.https://doi.org/10.1111/j.0021-8790.2004.00891.xMicky D. Eubanks, Catherine P. Blair, Warren G. Abrahamson ONE HOST SHIFT LEADS TO ANOTHER? EVIDENCE OF HOST-RACE FORMATION IN A PREDACEOUS GALL-BORING BEETLE, Evolution 57, no.11 (Jan 2003): 168.https://doi.org/10.1554/0014-3820(2003)057[0168:OHSLTA]2.0.CO;2Sharon Y. Strauss, David H. Siemens, Meika B. Decher, Thomas Mitchell‐Olds ECOLOGICAL COSTS OF PLANT RESISTANCE TO HERBIVORES IN THE CURRENCY OF POLLINATION, Evolution 53, no.44 (May 2017): 1105–1113.https://doi.org/10.1111/j.1558-5646.1999.tb04525.xConrad C. Labandeira EARLY HISTORY OF ARTHROPOD AND VASCULAR PLANT ASSOCIATIONS, Annual Review of Earth and Planetary Sciences 26, no.11 (May 1998): 329–377.https://doi.org/10.1146/annurev.earth.26.1.329Guy L. Bush, James J. Smith The Sympatric Origin of Phytophagous Insects, (Jan 1997): 3–19.https://doi.org/10.1007/978-3-642-60725-7_1L. M. Schoonhoven After the Verschaffelt‐Dethier era: The insect‐plant field comes of age, Entomologia Experimentalis et Applicata 80, no.11 (Mar 2011): 1–5.https://doi.org/10.1111/j.1570-7458.1996.tb00873.xMark D. Rausher Genetic analysis of coevolution between plants and their natural enemies, Trends in Genetics 12, no.66 (Jun 1996): 212–217.https://doi.org/10.1016/0168-9525(96)10020-2L. M. Schoonhoven After the Verschaffelt-Dethier era: The insect-plant field comes of age, (Jan 1996): 1–5.https://doi.org/10.1007/978-94-009-1720-0_1Laurent LeSage REVISION OF THE COSTATE SPECIES OF ALTICA MÜLLER OF NORTH AMERICA NORTH OF MEXICO (COLEOPTERA: CHRYSOMELIDAE), The Canadian Entomologist 127, no.33 (May 2012): 295–411.https://doi.org/10.4039/Ent127295-3PAUL FEENY The Evolution of Chemical Ecology: Contributions from the Study of Herbivorous Insects, (Jan 1992): 1–44.https://doi.org/10.1016/B978-0-08-092545-5.50006-7May R. Berenbaum Coevolution Between Herbivorous Insects and Plants: Tempo and Orchestration, (Jan 1990): 87–99.https://doi.org/10.1007/978-1-4471-3464-0_7C. D. Thomas, D. Vasco, M. C. Singer, D. Ng, R. R. White, D. Hinkley Diet divergence in two sympatric congeneric butterflies: Community or species level phenomenon?, Evolutionary Ecology 4, no.11 (Jan 1990): 62–74.https://doi.org/10.1007/BF02270716 Nancy A. Moran The Evolution of Host-Plant Alternation in Aphids: Evidence for Specialization as a Dead End, The American Naturalist 132, no.55 (Oct 2015): 681–706.https://doi.org/10.1086/284882John N. Thompson EVOLUTIONARY GENETICS OF OVIPOSITION PREFERENCE IN SWALLOWTAIL BUTTERFLIES, Evolution 42, no.66 (Jun 2017): 1223–1234.https://doi.org/10.1111/j.1558-5646.1988.tb04182.xKEVIN C. SPENCER Introduction: Chemistry and Coevolution, (Jan 1988): 1–11.https://doi.org/10.1016/B978-0-12-656855-4.50005-XJ. Daniel Hare, George G. Kennedy GENETIC VARIATION IN PLANT-INSECT ASSOCIATIONS: SURVIVAL OF LEPTINOTARSA DECEMLINEATA POPULATIONS ON SOLANUM CAROLINENSE, Evolution 40, no.55 (May 2017): 1031–1043.https://doi.org/10.1111/j.1558-5646.1986.tb00570.xSteven P. Courtney The Ecology of Pierid Butterflies: Dynamics and Interactions, (Jan 1986): 51–131.https://doi.org/10.1016/S0065-2504(08)60120-8John T. Smiley Are chemical barriers necessary for evolution of butterfly-plant associations?, Oecologia 65, no.44 (Mar 1985): 580–583.https://doi.org/10.1007/BF00379676J. Mark Scriber Host-Plant Suitability, (Jan 1984): 159–202.https://doi.org/10.1007/978-1-4899-3368-3_7WILLIAM H. CALVERT, FRANK E. HANSON THE ROLE OF SENSORY STRUCTURES AND PREOVIPOSITION BEHAVIOR IN OVIPOSITION BY THE PATCH BUTTERFLY, CHLOSYNE LACINIA, Entomologia Experimentalis et Applicata 33, no.22 (Apr 2011): 179–187.https://doi.org/10.1111/j.1570-7458.1983.tb03254.xS. J. McNaughton Physiological and Ecological Implications of Herbivory, (Jan 1983): 657–677.https://doi.org/10.1007/978-3-642-68153-0_18MARK D. RAUSHER Ecology of Host-Selection Behavior in Phytophagous Insects, (Jan 1983): 223–257.https://doi.org/10.1016/B978-0-12-209160-5.50014-3J. MARK SCRIBER Evolution of Feeding Specialization, Physiological Efficiency, and Host Races in Selected Papilionidae and Saturniidae, (Jan 1983): 373–412.https://doi.org/10.1016/B978-0-12-209160-5.50019-2STEPH B. J. MENKEN HOST RACES AND SYMPATRIC SPECIATION IN SMALL ERMINE MOTHS, YPONOMEUTIDAE, Entomologia Experimentalis et Applicata 30, no.33 (Apr 2011): 280–292.https://doi.org/10.1111/j.1570-7458.1981.tb03111.xSteven P. Courtney Coevolution of pierid butterflies and their cruciferous foodplants, Oecologia 51, no.11 (Oct 1981): 91–96.https://doi.org/10.1007/BF00344658John Jaenike, Robert K. Selander ECOLOGICAL GENERALISM IN DROSOPHILA FALLENI: GENETIC EVIDENCE, Evolution 33, no.22 (May 2017): 741–748.https://doi.org/10.1111/j.1558-5646.1979.tb04726.xV. G. DETHIER STUDIES ON INSECT/HOST PLANT RELATIONS — PAST AND FUTURE, Entomologia Experimentalis et Applicata 24, no.33 (Apr 2011): 759–766.https://doi.org/10.1111/j.1570-7458.1978.tb02840.xJ. Mark Scriber Cyanogenic glycosides in Lotus corniculatus, Oecologia 34, no.22 (Jan 1978): 143–155.https://doi.org/10.1007/BF00345163Peter W. Price GENERAL CONCEPTS ON THE EVOLUTIONARY BIOLOGY OF PARASITES, Evolution 31, no.22 (May 2017): 405–420.https://doi.org/10.1111/j.1558-5646.1977.tb01021.xWoodruff W. Benson, Keith S. Brown, Lawrence E. Gilbert COEVOLUTION OF PLANTS AND HERBIVORES: PASSION FLOWER BUTTERFLIES, Evolution 29, no.44 (May 2017): 659–680.https://doi.org/10.1111/j.1558-5646.1975.tb00861.xGuy L. Bush Sympatric Speciation in Phytophagous Parasitic Insects, (Jan 1975): 187–206.https://doi.org/10.1007/978-1-4615-8732-3_9Frances S. Chew Coevolution of pierid butterflies and their cruciferous foodplants, Oecologia 20, no.22 (Jan 1975): 117–127.https://doi.org/10.1007/BF00369024Guy L. Bush SYMPATRIC HOST RACE FORMATION AND SPECIATION IN FRUGIVOROUS FLIES OF THE GENUS RHAGOLETIS (DIPTERA, TEPHRITIDAE), Evolution 23, no.22 (May 2017): 237–251.https://doi.org/10.1111/j.1558-5646.1969.tb03508.xEberhard Schicha Morphologie und funktion der malachiidenmundwerkzeuge unter besonderer ber�cksichtigung von Malachtus bipustulatus L. (Coleopt., Malacodermata), Zeitschrift f�r Morphologie und �kologie der Tiere 60, no.44 (Jan 1967): 376–433.https://doi.org/10.1007/BF00424639F. S. Bodenheimer The Interaction of Environment and Heredity within the Organism, (Jan 1958): 202–236.https://doi.org/10.1007/978-94-017-6310-3_7V. G. Dethier EVOLUTION OF FEEDING PREFERENCES IN PHYTOPHAGOUS INSECTS, Evolution 8, no.11 (May 2017): 33–54.https://doi.org/10.1111/j.1558-5646.1954.tb00107.xRalph O. Snelling Resistance of plants to insect attack, The Botanical Review 7, no.1010 (Oct 1941): 543–586.https://doi.org/10.1007/BF02872411Alexander Barasch Natürliche Gruppierung der mitteleuropäischen Coleophoriden (Lep.) auf Grund der Struktur der männlichen Kopulationsapparate und ihre Beziehung zum Sackbau der Raupe und zum System der Nährpflanzen, Deutsche Entomologische Zeitschrift 1934, no.1-21-2 (Sep 1934): 1–116.https://doi.org/10.1002/mmnd.48019340102Alexander Barasch Natürliche Gruppierung der mitteleuropäischen Coleophoriden (Lep.) auf Grund der Struktur der männlichen Kopulationsapparate und ihre Beziehung zum Sackbau der Raupe und zum System der Nährpflanzen, Berliner entomologische Zeitschrift 1934, no.1-21-2 (Apr 2008): 1–116.https://doi.org/10.1002/mmnd.193419340102W. H. THORPE BIOLOGICAL RACES IN INSECTS AND ALLIED GROUPS, Biological Reviews 5, no.33 (Jul 1930): 177–212.https://doi.org/10.1111/j.1469-185X.1930.tb00616.x

Referência(s)
Altmetric
PlumX