The Problem of Acquired Physiological Immunity in Plants
1933; University of Chicago Press; Volume: 8; Issue: 3 Linguagem: Inglês
10.1086/394440
ISSN1539-7718
Autores Tópico(s)Plant Stress Responses and Tolerance
ResumoPrevious articleNext article No AccessThe Problem of Acquired Physiological Immunity in PlantsKenneth S. ChesterKenneth S. Chester Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by The Quarterly Review of Biology Volume 8, Number 3Sep., 1933 Published in association with Stony Brook University Article DOIhttps://doi.org/10.1086/394440 Views: 28Total views on this site Citations: 166Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Chang Tang, Shoichiro Kurata, Naoyuki Fuse Re‐recognition of innate immune memory as an integrated multidimensional concept, Microbiology and Immunology 67, no.88 (Jun 2023): 355–364.https://doi.org/10.1111/1348-0421.13083Aniruddh RABARI, Janki RUPARELIA, Chaitanya Kumar JHA, Riyaz Z. SAYYED, Debasis MITRA, Ankita PRIYADARSHINI, Ansuman SENAPATI, Periyasamy PANNEERSELVAM, Pradeep K. DAS MOHAPATRA Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: A review, Pedosphere 33, no.44 (Aug 2023): 556–566.https://doi.org/10.1016/j.pedsph.2022.10.003Anusha Pulavarty, Ankit Singh, Kira Young, Karina Horgan, Thomais Kakouli-Duarte Investigating the Effects of Alltech Crop Science (ACS) Products on Plant Defence against Root-Knot Nematode Infestation, Microorganisms 11, no.77 (Jun 2023): 1700.https://doi.org/10.3390/microorganisms11071700Michiko Yasuda, Moeka Fujita, Khamsalath Soudthedlath, Miyuki Kusajima, Hideki Takahashi, Tomoya Tanaka, Futo Narita, Tadao Asami, Akiko Maruyama-Nakashita, Hideo Nakashita Characterization of Disease Resistance Induced by a Pyrazolecarboxylic Acid Derivative in Arabidopsis thaliana, International Journal of Molecular Sciences 24, no.1010 (May 2023): 9037.https://doi.org/10.3390/ijms24109037Tony Reglinski, Neil Havis, Helen J. Rees, Huub de Jong The Practical Role of Induced Resistance for Crop Protection, Phytopathology® 113, no.44 (Apr 2023): 719–731.https://doi.org/10.1094/PHYTO-10-22-0400-IAAndrea Matros, Adam Schikora, Frank Ordon, Gwendolin Wehner QTL for induced resistance against leaf rust in barley, Frontiers in Plant Science 13 (Jan 2023).https://doi.org/10.3389/fpls.2022.1069087Deepshikha Satish, Sahil Mehta Induced Systematic Resistance and Plant Immunity, (Feb 2023): 151–173.https://doi.org/10.1007/978-3-031-24181-9_7Aakansha Verma, Sudha Bind, Jyoti Bajeli Inflection of the root microbiome by plants: Plant growth promotion and disease management, (Jan 2023): 151–173.https://doi.org/10.1016/B978-0-323-99896-3.00004-7Mukesh Meena, Garima Yadav, Priyankaraj Sonigra, Adhishree Nagda, Tushar Mehta, Prashant Swapnil, Harish, Avinash Marwal Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress, Plant Stress 5 (Aug 2022): 100103.https://doi.org/10.1016/j.stress.2022.100103 Shasmita, Barsha Bhushan Swain, Pradipta Kumar Mohapatra, Soumendra Kumar Naik, Arup Kumar Mukherjee Biopriming for induction of disease resistance against pathogens in rice, Planta 255, no.66 (May 2022).https://doi.org/10.1007/s00425-022-03900-8Gislaine Nascimento Vieira de Sá, Nilvanira Donizete Tebaldi Inactivated bacterial suspension to control tomato bacterial spot, Tropical Plant Pathology 38 (Apr 2022).https://doi.org/10.1007/s40858-022-00508-xAnirban Bhar, Amrita Chakraborty, Amit Roy Plant Responses to Biotic Stress: Old Memories Matter, Plants 11, no.11 (Dec 2021): 84.https://doi.org/10.3390/plants11010084Andleeb Zehra, Namita Anant Raytekar, Mukesh Meena, Prashant Swapnil Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review, Current Research in Microbial Sciences 2 (Dec 2021): 100054.https://doi.org/10.1016/j.crmicr.2021.100054Hideo Nakashita Studies on regulation of plant physiology by pesticides, Journal of Pesticide Science 46, no.44 (Nov 2021): 393–398.https://doi.org/10.1584/jpestics.J21-06Ali Hadizadeh Esfahani, Janina Maß, Asis Hallab, Bernhard M Schuldt, David Nevarez, Björn Usadel, Mark-Christoph Ott, Benjamin Buer, Andreas Schuppert Plant PhysioSpace: a robust tool to compare stress response across plant species, Plant Physiology 187, no.33 (Jul 2021): 1795–1811.https://doi.org/10.1093/plphys/kiab325Richard Karban Plant Communication, Annual Review of Ecology, Evolution, and Systematics 52, no.11 (Nov 2021): 1–24.https://doi.org/10.1146/annurev-ecolsys-010421-020045Jonas De Kesel, Uwe Conrath, Víctor Flors, Estrella Luna, Melissa H. Mageroy, Brigitte Mauch-Mani, Victoria Pastor, María J. Pozo, Corné M.J. Pieterse, Jurriaan Ton, Tina Kyndt The Induced Resistance Lexicon: Do’s and Don’ts, Trends in Plant Science 26, no.77 (Jul 2021): 685–691.https://doi.org/10.1016/j.tplants.2021.01.001Arpan Mukherjee, Gowardhan Kumar Chouhan, Anand Kumar Gaurav, Durgesh Kumar Jaiswal, Jay Prakash Verma Development of indigenous microbial consortium for biocontrol management, (Jan 2021): 91–104.https://doi.org/10.1016/B978-0-444-64325-4.00009-2Hideo Nakashtia, Miyuki Kusajima, Hisaharu Kato, Moeka Fujita Regulation of SA-Mediated Signal Transduction in Plant Immune System, (Jan 2022): 235–247.https://doi.org/10.1007/978-3-030-79229-9_12Abdoolnabi Bagheri, Yaghoub Fathipour Induced Resistance and Defense Primings, (Jan 2022): 73–139.https://doi.org/10.1007/978-981-16-3591-5_3Hidetaka Yakura Cognitive and Memory Functions in Plant Immunity, Vaccines 8, no.33 (Sep 2020): 541.https://doi.org/10.3390/vaccines8030541Pingtao Ding, Yuli Ding Stories of Salicylic Acid: A Plant Defense Hormone, Trends in Plant Science 25, no.66 (Jun 2020): 549–565.https://doi.org/10.1016/j.tplants.2020.01.004Qian Qu, Zhenyan Zhang, W. J. G. M. Peijnenburg, Wanyue Liu, Tao Lu, Baolan Hu, Jianmeng Chen, Jun Chen, Zhifen Lin, Haifeng Qian Rhizosphere Microbiome Assembly and Its Impact on Plant Growth, Journal of Agricultural and Food Chemistry 68, no.1818 (Apr 2020): 5024–5038.https://doi.org/10.1021/acs.jafc.0c00073Yuntong Liu, Shu Liang, Ru Ding, Yuyang Hou, Feier Deng, Xiaohui Ma, Tiantian Song, Dongmei Yan BCG-induced trained immunity in macrophage: reprograming of glucose metabolism, International Reviews of Immunology 39, no.33 (Jan 2020): 83–96.https://doi.org/10.1080/08830185.2020.1712379Waquar Akhter Ansari, Ram Krishna, Mohammad Tarique Zeyad, Shailendra Singh, Akhilesh Yadav Endophytic Actinomycetes-Mediated Modulation of Defense and Systemic Resistance Confers Host Plant Fitness Under Biotic Stress Conditions, (Apr 2020): 167–180.https://doi.org/10.1007/978-981-15-3028-9_10Eric C. Holmes, Yun-Chu Chen, Elizabeth S. Sattely, Mary Beth Mudgett An engineered pathway for N -hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato, Science Signaling 12, no.604604 (Oct 2019).https://doi.org/10.1126/scisignal.aay3066Tony Twamley, Mark Gaffney, Angela Feechan A Microbial Fermentation Mixture Primes for Resistance Against Powdery Mildew in Wheat, Frontiers in Plant Science 10 (Oct 2019).https://doi.org/10.3389/fpls.2019.01241Patricia A. Rodriguez, Michael Rothballer, Soumitra Paul Chowdhury, Thomas Nussbaumer, Caroline Gutjahr, Pascal Falter-Braun Systems Biology of Plant-Microbiome Interactions, Molecular Plant 12, no.66 (Jun 2019): 804–821.https://doi.org/10.1016/j.molp.2019.05.006Margarete Baier, Andras Bittner, Andreas Prescher, Jörn van Buer Preparing plants for improved cold tolerance by priming, Plant, Cell & Environment 42, no.33 (Sep 2018): 782–800.https://doi.org/10.1111/pce.13394Daniel F. Klessig, Hyong Woo Choi, D’Maris Amick Dempsey Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future, Molecular Plant-Microbe Interactions 31, no.99 (Sep 2018): 871–888.https://doi.org/10.1094/MPMI-03-18-0067-CRJing Wang, Shifeng Cao, Lei Wang, Xiaoli Wang, Peng Jin, Yonghua Zheng Effect of β-Aminobutyric Acid on Disease Resistance Against Rhizopus Rot in Harvested Peaches, Frontiers in Microbiology 9 (Jul 2018).https://doi.org/10.3389/fmicb.2018.01505Thomas Pradeu, Louis Du Pasquier Immunological memory: What's in a name?, Immunological Reviews 283, no.11 (Apr 2018): 7–20.https://doi.org/10.1111/imr.12652Claire Barker Systemic Acquired Resistance, (Apr 2018): 209–229.https://doi.org/10.1002/9781119312994.apr0032Raúl René Meléndez Valle, Katia Curvelo Bispo dos Santos, Joelson Virginio Orrico da Silva Mecanismos de resistência em plantas contra ataque de patógenos: indução de resistência, (Jan 2018): 85–150.https://doi.org/10.7476/9786586213188.0004Mei Li, Michiko Yasuda, Hiroko Yamaya-Ito, Masumi Maeda, Nobumitsu Sasaki, Maki Nagata, Akihiro Suzuki, Shin Okazaki, Hitoshi Sekimoto, Tetsuya Yamada, Naoko Ohkama-Ohtsu, Tadashi Yokoyama Involvement of programmed cell death in suppression of the number of root nodules formed in soybean induced by Bradyrhizobium infection, Soil Science and Plant Nutrition 63, no.66 (Nov 2017): 561–577.https://doi.org/10.1080/00380768.2017.1403842Eun Jin Jeon, Kazuki Tadamura, Taiki Murakami, Jun-ichi Inaba, Bo Min Kim, Masako Sato, Go Atsumi, Kazuyuki Kuchitsu, Chikara Masuta, Kenji S. Nakahara, Anne E. Simon rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming, Journal of Virology 91, no.1919 (Oct 2017).https://doi.org/10.1128/JVI.00761-17Glynn C. Percival, Simon P. Holmes The influence of systemic inducing agents on horse chestnut leaf miner (Cameraria ohridella) severity in white flowering horse chestnut (Aesculus hoppicastanum L.), Urban Forestry & Urban Greening 20 (Dec 2016): 97–102.https://doi.org/10.1016/j.ufug.2016.08.009Eva-Maria Reimer-Michalski, Uwe Conrath Innate immune memory in plants, Seminars in Immunology 28, no.44 (Aug 2016): 319–327.https://doi.org/10.1016/j.smim.2016.05.006Robin K. Cameron, Philip Carella, Marisa Isaacs, Marc Champigny, Juliane Merl-Pham, Sanjukta Dey, A. Corina Vlot Using DIR1 to investigate long-distance signal movement during Systemic Acquired Resistance, Canadian Journal of Plant Pathology 38, no.11 (Feb 2016): 19–24.https://doi.org/10.1080/07060661.2016.1147497Stuti Patel, Riyaz Z. Sayyed, Meenu Saraf Bacterial Determinants and Plant Defense Induction: Their Role as Biocontrol Agents in Sustainable Agriculture, (Jun 2016): 187–204.https://doi.org/10.1007/978-3-319-29573-2_9G. Senthilraja Induction of Systemic Resistance in Crop Plants Against Plant Pathogens by Plant Growth-Promoting Actinomycetes, (Jun 2016): 193–202.https://doi.org/10.1007/978-981-10-0707-1_12G.L. Hartman, M.L. Pawlowski, H.-X. Chang, C.B. Hill Successful Technologies and Approaches Used to Develop and Manage Resistance against Crop Diseases and Pests, (Jan 2016): 43–66.https://doi.org/10.1016/B978-1-78242-335-5.00003-2You-Xin Yang, Meng-Meng Wang, Yan-Ling Yin, Eugen Onac, Guo-Fu Zhou, Sheng Peng, Xiao-Jian Xia, Kai Shi, Jing-Quan Yu, Yan-Hong Zhou RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants, BMC Genomics 16, no.11 (Feb 2015).https://doi.org/10.1186/s12864-015-1228-7Jos W.M. van der Meer, Leo A.B. Joosten, Niels Riksen, Mihai G. Netea Trained immunity: A smart way to enhance innate immune defence, Molecular Immunology 68, no.11 (Nov 2015): 40–44.https://doi.org/10.1016/j.molimm.2015.06.019Uwe Conrath, Gerold J.M. Beckers, Caspar J.G. Langenbach, Michal R. Jaskiewicz Priming for Enhanced Defense, Annual Review of Phytopathology 53, no.11 (Aug 2015): 97–119.https://doi.org/10.1146/annurev-phyto-080614-120132M. R. Kant, W. Jonckheere, B. Knegt, F. Lemos, J. Liu, B. C. J. Schimmel, C. A. Villarroel, L. M. S. Ataide, W. Dermauw, J. J. Glas, M. Egas, A. Janssen, T. Van Leeuwen, R. C. Schuurink, M. W. Sabelis, J. M. Alba Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities, Annals of Botany 115, no.77 (May 2015): 1015–1051.https://doi.org/10.1093/aob/mcv054Elfi Töpfer, Diana Boraschi, Paola Italiani Innate Immune Memory: The Latest Frontier of Adjuvanticity, Journal of Immunology Research 2015 (Jan 2015): 1–7.https://doi.org/10.1155/2015/478408András Künstler, Renáta Bacsó, Yaser Mohamed Hafez, Lóránt Király Reactive Oxygen Species and Plant Disease Resistance, (Jan 2015): 269–303.https://doi.org/10.1007/978-3-319-20421-5_11Ray Hammerschmidt Introduction: Definitions and Some History, (Oct 2014): 1–10.https://doi.org/10.1002/9781118371848.ch1Martin Heil Trade‐offs Associated with Induced Resistance, (Oct 2014): 171–192.https://doi.org/10.1002/9781118371848.ch9Tony Reglinski, Elizabeth Dann, Brian Deverall Implementation of Induced Resistance for Crop Protection, (Oct 2014): 249–299.https://doi.org/10.1002/9781118371848.ch12Smriti Shrivastava, Ram Prasad, Ajit Varma Anatomy of Root from Eyes of a Microbiologist, (Mar 2014): 3–22.https://doi.org/10.1007/978-3-642-54276-3_1Łukasz Janus, Grzegorz Milczarek, Magdalena Arasimowicz-Jelonek, Dariusz Abramowski, Hanna Billert, Jolanta Floryszak-Wieczorek Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans, Plant Science 211 (Oct 2013): 23–34.https://doi.org/10.1016/j.plantsci.2013.06.007Ordom Brian Huot, Punya Nachappa, Cecilia Tamborindeguy The evolutionary strategies of plant defenses have a dynamic impact on the adaptations and interactions of vectors and pathogens, Insect Science 20, no.33 (Jan 2013): 297–306.https://doi.org/10.1111/1744-7917.12010Anil K. H. Raghavendra, George Newcombe The contribution of foliar endophytes to quantitative resistance to Melampsora rust, New Phytologist 197, no.33 (Dec 2012): 909–918.https://doi.org/10.1111/nph.12066Saskia C. M. Van Wees, Johan A. Van Pelt, Peter A. H. M. Bakker, Corné M. J. Pieterse Bioassays for Assessing Jasmonate-Dependent Defenses Triggered by Pathogens, Herbivorous Insects, or Beneficial Rhizobacteria, (Apr 2013): 35–49.https://doi.org/10.1007/978-1-62703-414-2_4Jyoti Shah, Ratnesh Chaturvedi Long-Distance Signaling in Systemic Acquired Resistance, (Apr 2013): 1–21.https://doi.org/10.1007/978-3-642-36470-9_1Jolanta Floryszak-Wieczorek, Magdalena Arasimowicz-Jelonek, Grzegorz Milczarek, Lukasz Janus, Sylwia Pawlak-Sprada, Dariusz Abramowski, Joanna Deckert, Hanna Billert Nitric Oxide–Mediated Stress Imprint in Potato as an Effect of Exposure to a Priming Agent, Molecular Plant-Microbe Interactions 25, no.1111 (Nov 2012): 1469–1477.https://doi.org/10.1094/MPMI-02-12-0044-RAlan C. Cassells, Susan M. Rafferty-McArdle Priming of Plant Defences by PGPR against Fungal and Bacterial Plant Foliar Pathogens, (Nov 2011): 1–26.https://doi.org/10.1007/978-3-662-45795-5_1Alan C. Cassells, Susan M. Rafferty-McArdle Priming of Plant Defences by PGPR against Fungal and Bacterial Plant Foliar Pathogens, (Nov 2011): 1–26.https://doi.org/10.1007/978-3-642-23465-1_1Marc J Champigny, Heather Shearer, Asif Mohammad, Karen Haines, Melody Neumann, Roger Thilmony, Sheng Yang He, Pierre Fobert, Nancy Dengler, Robin K Cameron Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsisusing DIR1:GUS and DIR1:EGFP reporters, BMC Plant Biology 11, no.11 (Sep 2011).https://doi.org/10.1186/1471-2229-11-125Uwe Conrath Molecular aspects of defence priming, Trends in Plant Science 16, no.1010 (Oct 2011): 524–531.https://doi.org/10.1016/j.tplants.2011.06.004Mihai G. Netea, Jessica Quintin, Jos W.M. van der Meer Trained Immunity: A Memory for Innate Host Defense, Cell Host & Microbe 9, no.55 (May 2011): 355–361.https://doi.org/10.1016/j.chom.2011.04.006Anjani M. Karunaratne Biocontrol Mechanisms Employed by PGPR and Strategies of Microbial Antagonists in Disease Control on the Postharvest Environment of Fruits, (Mar 2011): 131–163.https://doi.org/10.1007/978-3-642-18357-7_6Sudhamoy Mandal, Ramesh C. Ray Induced Systemic Resistance in Biocontrol of Plant Diseases, (May 2011): 241–260.https://doi.org/10.1007/978-3-642-19769-7_11P. A. Gorsuch, A. W. Sargeant, S. D. Penfield, W. P. Quick, O. K. Atkin Systemic low temperature signaling in Arabidopsis, Plant and Cell Physiology 51, no.99 (Sep 2010): 1488–1498.https://doi.org/10.1093/pcp/pcq112Ray Hammerschmidt, Jennifer Smith Becker Acquired Resistance to Disease in Plants, (Jul 2010): 247–289.https://doi.org/10.1002/9780470650608.ch5Santi M. Mandal, Dipjyoti Chakraborty, Satyahari Dey Phenolic acids act as signaling molecules in plant-microbe symbioses, Plant Signaling & Behavior 5, no.44 (Oct 2014): 359–368.https://doi.org/10.4161/psb.5.4.10871Terrence P. Delaney Salicylic Acid, (Jan 2010): 681–699.https://doi.org/10.1007/978-1-4020-2686-7_29Heiko Ziebell, John Peter Carr Cross-Protection, (Jan 2010): 211–264.https://doi.org/10.1016/S0065-3527(10)76006-1Yoshihiro NARUSAKA, Kazuyuki HIRATSUKA, Yoshiteru NOUTOSHI , KAGAKU TO SEIBUTSU 48, no.1010 (Jan 2010): 706–712.https://doi.org/10.1271/kagakutoseibutsu.48.706M. Mari, F. Neri, P. Bertolini New Approaches for Postharvest Disease Control in Europe, (Nov 2009): 119–135.https://doi.org/10.1007/978-1-4020-8930-5_9Marc J. Champigny, Robin K. Cameron Chapter 4 Action at a Distance, (Jan 2009): 123–171.https://doi.org/10.1016/S0065-2296(09)51004-XYoshihiro Narusaka, Mari Narusaka, Hiroshi Abe, Nami Hosaka, Masatomo Kobayashi, Tomonori Shiraishi, Masaki Iwabuchi High-throughput screening for plant defense activators using a .BETA.-glucuronidase-reporter gene assay in Arabidopsis thaliana, Plant Biotechnology 26, no.33 (Jan 2009): 345–349.https://doi.org/10.5511/plantbiotechnology.26.345Mari Narusaka, Kiyoshi Kawai, Norihiko Izawa, Motoaki Seki, Kazuo Shinozaki, Shigemi Seo, Masatomo Kobayashi, Tomonori Shiraishi, Yoshihiro Narusaka Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms, Journal of General Plant Pathology 74, no.55 (Aug 2008): 345–354.https://doi.org/10.1007/s10327-008-0117-1B. Mandal, S. Mandal, A. S. Csinos, N. Martinez, A. K. Culbreath, H. R. Pappu Biological and Molecular Analyses of the Acibenzolar-S-Methyl-Induced Systemic Acquired Resistance in Flue-Cured Tobacco Against Tomato spotted wilt virus, Phytopathology 98, no.22 (Feb 2008): 196–204.https://doi.org/10.1094/PHYTO-98-2-0196L. C. van Loon Plant responses to plant growth-promoting rhizobacteria, European Journal of Plant Pathology 119, no.33 (Jun 2007): 243–254.https://doi.org/10.1007/s10658-007-9165-1Ralf R Weigel Salicylic Acid, (Jul 2007).https://doi.org/10.1002/9780470015902.a0020137L. C. van Loon Plant responses to plant growth-promoting rhizobacteria, (Jun 2007): 243–254.https://doi.org/10.1007/978-1-4020-6776-1_2Jean M Bonasera, Jihyun F Kim, Steven V Beer PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora, BMC Plant Biology 6, no.11 (Oct 2006).https://doi.org/10.1186/1471-2229-6-23Françoise Rocher, Jean-François Chollet, Cyril Jousse, Jean-Louis Bonnemain Salicylic Acid, an Ambimobile Molecule Exhibiting a High Ability to Accumulate in the Phloem, Plant Physiology 141, no.44 (Jun 2006): 1684–1693.https://doi.org/10.1104/pp.106.082537Hideki Takahashi, Takeaki Ishihara, Shu Hase, Ayaka Chiba, Kazuhiro Nakaho, Tsutomu Arie, Tohru Teraoka, Michiaki Iwata, Taneaki Tugane, Daisuke Shibata, Shigehito Takenaka Beta-Cyanoalanine Synthase as a Molecular Marker for Induced Resistance by Fungal Glycoprotein Elicitor and Commercial Plant Activators, Phytopathology® 96, no.88 (Aug 2006): 908–916.https://doi.org/10.1094/PHYTO-96-0908Uwe Conrath Systemic Acquired Resistance, Plant Signaling & Behavior 1, no.44 (Oct 2014): 179–184.https://doi.org/10.4161/psb.1.4.3221Michiko Yasuda, Miyuki Kusajima, Masami Nakajima, Katsumi Akutsu, Toshiaki Kudo, Shigeo Yoshida, Hideo Nakashita Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation, Journal of Pesticide Science 31, no.33 (Jan 2006): 329–334.https://doi.org/10.1584/jpestics.31.329Mari Narusaka, Hiroshi Abe, Masatomo Kobayashi, Yasuyuki Kubo, Kiyoshi Kawai, Norihiko Izawa, Yoshihiro Narusaka A model system to screen for candidate plant activators using an immune-induction system in Arabidopsis, Plant Biotechnology 23, no.33 (Jan 2006): 321–327.https://doi.org/10.5511/plantbiotechnology.23.321A J De Lucca, T E Cleveland, D E Wedge Plant-derived antifungal proteins and peptides, Canadian Journal of Microbiology 51, no.1212 (Dec 2005): 1001–1014.https://doi.org/10.1139/w05-063João Sebastião de P. Araujo, Karin da S. Gonçalves, Bruno C. de Oliveira, Raul de L.D. Ribeiro, José Carlos Polidoro, , Efeito do acibenzolar-S-methyl sobre murcha-bacteriana do tomateiro, Horticultura Brasileira 23, no.11 (Mar 2005): 5–8.https://doi.org/10.1590/S0102-05362005000100001A. A. Czelleng, Z. Bozsó, P. G. Ott, E. Besenyei, G. J. Varga, Á. Szatmári, Y. M. Hafez, Z. Klement Isolation of in planta-Induced Genes of Pseudomonas viridiflava, Acta Phytopathologica et Entomologica Hungarica 39, no.44 (Nov 2004): 361–375.https://doi.org/10.1556/APhyt.39.2004.4.4Gary E. Vallad, Robert M. Goodman Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture, Crop Science 44, no.66 (Nov 2004): 1920–1934.https://doi.org/10.2135/cropsci2004.1920Jean-Pierre Métraux, Jörg Durner The Role of Salicylic Acid and Nitric Oxide in Programmed Cell Death and Induced Resistance, (Jan 2004): 111–150.https://doi.org/10.1007/978-3-662-08818-0_5Michiko Yasuda, Hideo Nakashita, Shigeo Yoshida Tiadinil, a Novel Class of Activator of Systemic Acquired Resistance, Induces Defense Gene Expression and Disease Resistance in Tobacco, Journal of Pesticide Science 29, no.11 (Jan 2004): 46–49.https://doi.org/10.1584/jpestics.29.46Ingrid W. Kiefer, Alan J. Slusarenko The Pattern of Systemic Acquired Resistance Induction within the Arabidopsis Rosette in Relation to the Pattern of Translocation, Plant Physiology 132, no.22 (Jun 2003): 840–847.https://doi.org/10.1104/pp.103.021709Pablo C. García, Rosa M. Rivero, Juan M. Ruiz, Luis Romero The Role of Fungicides in the Physiology of Higher Plants: Implications for Defense Responses, The Botanical Review 69, no.22 (Apr 2003): 162–172.https://doi.org/10.1663/0006-8101(2003)069[0162:TROFIT]2.0.CO;2Hideo Nakashita, Michiko Yasuda, Takako Nitta, Tadao Asami, Shozo Fujioka, Yuko Arai, Katsuhiko Sekimata, Suguru Takatsuto, Isamu Yamaguchi, Shigeo Yoshida Brassinosteroid functions in a broad range of disease resistance in tobacco and rice, The Plant Journal 33, no.55 (Feb 2003): 887–898.https://doi.org/10.1046/j.1365-313X.2003.01675.xWolfgang Friedt, Kay Werner, Bettina Pellio, Claudia Weiskorn, Marco Krämer, Frank Ordon Strategies of Breeding for Durable Disease Resistance in Cereals, (Jan 2003): 138–167.https://doi.org/10.1007/978-3-642-55819-1_8L. E. Claflin Control of Pseudomonas syringae Pathovars, (Jan 2003): 423–430.https://doi.org/10.1007/978-94-017-0133-4_46Patrick J. Moran, Youfa Cheng, Jeffery L. Cassell, Gary A. Thompson Gene expression profiling of Arabidopsis thaliana in compatible plant‐aphid interactions, Archives of Insect Biochemistry and Physiology 51, no.44 (Nov 2002): 182–203.https://doi.org/10.1002/arch.10064Hideo Nakashita, Keiko Yoshioka, Michiko Yasuda, Takako Nitta, Yuko Arai, Shigeo Yoshida, Isamu Yamaguchi Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation, Physiological and Molecular Plant Pathology 61, no.44 (Oct 2002): 197–203.https://doi.org/10.1006/pmpp.2002.0426M. L. V. Resende, G. B. A. Nojosa, L. S. Cavalcanti, M. A. G. Aguilar, L. H. C. P. Silva, J. O. Perez, G. C. G. Andrade, G. A. Carvalho, R. M. Castro Induction of resistance in cocoa against Crinipellis perniciosa and Verticillium dahliae by acibenzolar‐ S ‐methyl (ASM), Plant Pathology 51, no.55 (Oct 2002): 621–628.https://doi.org/10.1046/j.1365-3059.2002.00754.xBeata Kułek, Jolanta Floryszak-Wieczorek Local and systemic protection of poinsettia (Euphorbia pulcherrima Willd.) against Botrytis cinerea Pers. induced by benzothiadiazole, Acta Physiologiae Plantarum 24, no.33 (Sep 2002): 273–278.https://doi.org/10.1007/s11738-002-0051-3Hideo Nakashita, Michiko Yasuda, Masanori Nishioka, Satoru Hasegawa, Yuko Arai, Masakazu Uramoto, Shigeo Yoshida, Isamu Yamaguchi Chloroisonicotinamide Derivative Induces a Broad Range of Disease Resistance in Rice and Tobacco, Plant and Cell Physiology 43, no.77 (Jul 2002): 823–831.https://doi.org/10.1093/pcp/pcf097Jianping Cui, Georg Jander, Lisa R. Racki, Paul D. Kim, Naomi E. Pierce, Frederick M. Ausubel Signals Involved in Arabidopsis Resistance to Trichoplusia ni Caterpillars Induced by Virulent and Avirulent Strains of the Phytopathogen Pseudomonas syringae , Plant Physiology 129, no.22 (Jun 2002): 551–564.https://doi.org/10.1104/pp.010815Hércules Menezes, Carlos Jared Immunity in plants and animals: common ends through different means using similar tools, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 132, no.11 (May 2002): 1–7.https://doi.org/10.1016/S1532-0456(02)00043-1Yigal R. Cohen β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens, Plant Disease 86, no.55 (May 2002): 448–457.https://doi.org/10.1094/PDIS.2002.86.5.448Hsien-Jung Chen, Wen-Chi Hou, Joseph Kucapos;, Yaw-Huei Lin Salicylic acid mediates alternative signal transduction pathways for pathogenesis-related acidic β-1,3-glucanase (protein N) induction in tobacco cell suspension culture, Journal of Plant Physiology 159, no.44 (Jan 2002): 331–337.https://doi.org/10.1078/0176-1617-00513Frank Niepold, Klaus Rudolph Biotechnology in Plant Protection, (Mar 2008): 485–506.https://doi.org/10.1002/9783527620937.ch16Frank Niepold, Klaus Rudolph Biotechnology in Plant Protection, (May 2008): 485–506.https://doi.org/10.1002/9783527620999.ch16kF. J. Louws, M. Wilson, H. L. Campbell, D. A. Cuppels, J. B. Jones, P. B. Shoemaker, F. Sahin, S. A. Miller Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator, Plant Disease 85, no.55 (May 2001): 481–488.https://doi.org/10.1094/PDIS.2001.85.5.481David B. Collinge, Jonas Borch, Kenneth Madriz-Ordeñana, Mari-Anne Newman The Responses of Plants to Pathogens, (Jan 2001): 131–158.https://doi.org/10.1007/978-94-015-9783-8_7Keiko Yoshioka, Hideo Nakashita, Daniel F. Klessig, Isamu Yamaguchi Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action, The Plant Journal 25, no.22 (Jul 2008): 149–157.https://doi.org/10.1111/j.1365-313X.2001.00952.xChristopher T.D Price, Ian R Lee, John E Gustafson The effects of salicylate on bacteria, The International Journal of Biochemistry & Cell Biology 32, no.1010 (Oct 2000): 1029–1043.https://doi.org/10.1016/S1357-2725(00)00042-XB. Lian, X. Zhou, M. Miransari, D. L. Smith Effects of Salicylic Acid on the Development and Root Nodulation of Soybean Seedlings, Journal of Agronomy and Crop Science 185, no.33 (Dec 2001): 187–192.https://doi.org/10.1046/j.1439-037x.2000.00419.xN. T. Keen A Century of Plant Pathology: A Retrospective View on Understanding Host-Parasite Interactions, Annual Review of Phytopathology 38, no.11 (Sep 2000): 31–48.https://doi.org/10.1146/annurev.phyto.38.1.31Ghandi H. Anfoka Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus, Crop Protection 19, no.66 (Jul 2000): 401–405.https://doi.org/10.1016/S0261-2194(00)00031-4Herman Silva, Keiko Yoshioka, Hugo K. Dooner, Daniel F. Klessig Characterization of a New Arabidopsis Mutant Exhibiting Enhanced Disease Resistance, Molecular Plant-Microbe Interactions® 12, no.1212 (Dec 1999): 1053–1063.https://doi.org/10.1094/MPMI.1999.12.12.1053Matthew E. Spletzer, Alexander J. Enyedi Salicylic Acid Induces Resistance to Alternaria solani in Hydroponically Grown Tomato, Phytopathology 89, no.99 (Sep 1999): 722–727.https://doi.org/10.1094/PHYTO.1999.89.9.722ROBIN K. CAMERON, NANCY L. PAIVA, CHRIS J. LAMB, RICHARD A. DIXON Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis, Physiological and Molecular Plant Pathology 55, no.22 (Aug 1999): 121–130.https://doi.org/10.1006/pmpp.1999.0214L. Tosi, R. Luigetti, A. Zazzerini Induced Resistance Against Plasmopara helianthi in Sunflower Plants by DL-β-Amino-n-butyric acid, Journal of Phytopathology 146, no.5-65-6 (Jul 1998): 295–299.https://doi.org/10.1111/j.1439-0434.1998.tb04694.xS. Frfy, T. L. W. Carver Induction of Systemic Resistance in Pea to Pea Powdery Mildew by Exogenous Application of Salicylic Acid, Journal of Phytopathology 146, no.5-65-6 (Jul 1998): 239–245.https://doi.org/10.1111/j.1439-0434.1998.tb04685.xR. Reuveni, M. Reuveni Foliar-fertilizer therapy — a concept in integrated pest management, Crop Protection 17, no.22 (Mar 1998): 111–118.https://doi.org/10.1016/S0261-2194(97)00108-7C. Xie, J. Kúc Induction of resistance toPeronospora tabacinain tobacco leaf disks by leaf disks with induced resistance, Physiological and Molecular Plant Pathology 51, no.55 (Nov 1997): 279–286.https://doi.org/10.1006/pmpp.1997.0104L Sticher, B Mauch-Mani, and JP Métraux SYSTEMIC ACQUIRED RESISTANCE, Annual Review of Phytopathology 35, no.11 (Sep 1997): 235–270.https://doi.org/10.1146/annurev.phyto.35.1.235Ulrich Schaffrath, Ernst
Referência(s)