Glucose toxicity in the vascular complications of diabetes: The cellular perspective

1992; Wiley; Volume: 8; Issue: 2 Linguagem: Inglês

10.1002/dmr.5610080202

ISSN

1099-0895

Autores

Mara Lorenzi,

Tópico(s)

melanin and skin pigmentation

Resumo

Diabetes/Metabolism ReviewsVolume 8, Issue 2 p. 85-103 Article Glucose toxicity in the vascular complications of diabetes: The cellular perspective Mara Lorenzi MD, Corresponding Author Mara Lorenzi MD Eye Research Institute and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, U.S.A.Eye Research Institute, 20 Staniford Street, Boston, MA 02114, U.S.A.Search for more papers by this author Mara Lorenzi MD, Corresponding Author Mara Lorenzi MD Eye Research Institute and Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, U.S.A.Eye Research Institute, 20 Staniford Street, Boston, MA 02114, U.S.A.Search for more papers by this author First published: July 1992 https://doi.org/10.1002/dmr.5610080202Citations: 61AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Leslie RDG, and Pyke DA: Diabetic retinopathy in identical twins. Diabetes 31: 19–21, 1982. CASPubMedWeb of Science®Google Scholar 2 Steffes MW, Sutherland DER, Goetz FC, Rich SS, and Mauer SM: Studies of kidney and muscle biopsy specimens from identical twins discordant for type I diabetes. N Engl J Med 312: 1282–1287, 1985. 10.1056/NEJM198505163122003 PubMedWeb of Science®Google Scholar 3 Feingold KR, Lee TH, Chung MY, and Siperstein MD: Muscle capillary basement membrane width in patients with Vacor-induced diabetes mellitus. J Clin Invest 78: 102–107, 1986. 10.1172/JCI112537 CASPubMedWeb of Science®Google Scholar 4 West KM, Erdreich LJ, and Stober JA: A detailed study of risk factors for retinopathy and nephropathy in diabetes. Diabetes 29: 501–508, 1980. 10.2337/diab.29.7.501 CASPubMedWeb of Science®Google Scholar 5 Janka HU, Warram JH, Rand LI, and Krolewski AS: Risk factors for progression of background retinopathy in long-standing IDDM. Diabetes 38: 460–464, 1989. CASPubMedWeb of Science®Google Scholar 6 Nathan DM, Singer DE, Godine JE, Hodgson Harrington C, and Perlmuter LC: Retinopathy in older type II diabetics. Association with glucose control. Diabetes 35: 797–801, 1986. CASPubMedWeb of Science®Google Scholar 7 Singer DE, Nathan DM, Anderson KM, Wilson PWF, and Evans JC: Association of HbA1c with prevalent cardiovascular disease in the original cohort of the Framingham Heart Study. Diabetes 41: 202–208, 1992. PubMedWeb of Science®Google Scholar 8 Greene MF, Hare JW, Cloherty JP, Benacerraf BR, and Soeldner JS: First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology 39: 225–231, 1989. 10.1002/tera.1420390303 CASPubMedWeb of Science®Google Scholar 9 Gabbay KH: The sorbitol pathway and the complications of diabetes. N Engl J Med 288: 831–836, 1973. 10.1056/NEJM197304192881609 CASPubMedWeb of Science®Google Scholar 10 Hunt JV, Dean RT, and Wolff SP: Hydroxyl radical production and autoxidative glycosylation. Biochem J 256: 205–212, 1988. 10.1042/bj2560205 CASPubMedWeb of Science®Google Scholar 11 Brownlee M, Vlassara H, and Cerami A: Nonenzy-matic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101: 527–537, 1984. 10.7326/0003-4819-101-4-527 CASPubMedWeb of Science®Google Scholar 12 Gonzalez AM, Sochor M, and McLean P: The effect of an aldose reductase inhibitor (sorbinil) on the level of metabolites in lenses of diabetic rats. Diabetes 32: 482–485, 1983. 10.2337/diabetes.32.5.482 CASPubMedWeb of Science®Google Scholar 13 Pugliese G, Tilton RG, and Williamson JR: Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diabetes/Metab Rev 7: 35–59, 1991. 10.1002/dmr.5610070106 CASPubMedWeb of Science®Google Scholar 14 Baynes JW: Role of oxidative stress in development of complications of diabetes. Diabetes 40: 405–412, 1991. 10.2337/diab.40.4.405 CASPubMedWeb of Science®Google Scholar 15 Greene DA, Lattimer SA, and Sima AAF: Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 316: 599–606, 1987. 10.1056/NEJM198703053161007 CASPubMedWeb of Science®Google Scholar 16 Engerman RL, and Kern TS: Experimental galactosemia produces diabetic-like retinopathy. Diabetes 33: 97–100, 1984. 10.2337/diab.33.1.97 CASPubMedWeb of Science®Google Scholar 17 Kador PF, Akagi Y, Takahashi Y, Ikebe H, Wyman M, and Kinoshita JH: Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol 108: 1301–1309, 1990. 10.1001/archopht.1990.01070110117035 CASPubMedWeb of Science®Google Scholar 18 Robison WF, Nagata M, Laver N, Hohman TC, and Kinoshita JH: Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest Ophthalml Vis Sci 30: 2285–2292, 1989. PubMedWeb of Science®Google Scholar 19 Engerman RL, and Kern TS: Hyperglycemia and development of glomerular pathology: diabetes compared with galactosemia. Kidney Int 36: 41–45, 1989. 10.1038/ki.1989.158 CASPubMedWeb of Science®Google Scholar 20 Viberti GC: Recent advances in understanding mechanisms and natural history of diabetic renal disease. Diabetes Care 11 (Suppl 1): 3–9, 1988. PubMedWeb of Science®Google Scholar 21 Kern TS, and Engerman RL: Retinal polyol and myo-inositol in galactosemic dogs given an aldose-reductase inhibitor. Invest Ophthalmol Vis Sci 32: 3175–3177, 1991. CASPubMedWeb of Science®Google Scholar 22 Hammes HP, Martin S, Federlin K, Geisen K, and Brownlee M: Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA 88: 11555–11558, 1991. 10.1073/pnas.88.24.11555 CASPubMedWeb of Science®Google Scholar 23 Tilton RG, Pugliese G, LaRose LS, Falier AM, Chang K, Province MA, and Williamson JR: Discordant effects of the aldose reductase inhibitor, sorbinil, on vascular structure and function in chronically diabetic and galactosemic rats. J Diabetic Compl 5: 230–237, 1991. 10.1016/0891-6632(91)90082-Z CASGoogle Scholar 24 Davis MD: Diabetic retinopathy: a clinical overview. Diabetes/Metab Rev 4: 291–322, 1988. 10.1002/dmr.5610040402 CASPubMedWeb of Science®Google Scholar 25 Østerby R: Basement membrane morphology in diabetes mellitus. In Diabetes Mellitus. Theory and Practice. H Rifkin, and D Porte, Eds. Elsevier, New York, 1990, pp. 220–233. Google Scholar 26 Parving HH: Increased microvascular permeability to plasma proteins in short- and long-term juvenile diabetics. Diabetes 25 (Suppl 2): 884–889, 1976. CASPubMedWeb of Science®Google Scholar 27 Tilton RG, Faller AN, Burkhardt JK, Hoffmann PL, Kilo C, and Williamson JR: Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia 28: 895–900, 1985. 10.1007/BF00703132 CASPubMedWeb of Science®Google Scholar 28 Krolewski AS, Warram JH, Valsania P, Martin BC, Laffel LMB, and Christlieb AR: Evolving natural history of coronary artery disease in diabetes mellitus. Am J Med 90 (Suppl 2A): 56S–61S, 1991. 10.1016/0002-9343(91)90040-5 CASPubMedWeb of Science®Google Scholar 29 Fuster V, Badimon L, Badimon JJ, and Chesebro JH: The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326: 242–250, 1992. 10.1056/NEJM199201233260406 CASPubMedWeb of Science®Google Scholar 30 Steffes MW, Osterby R, Chavers B, and Mauer SM: Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 38: 1077–1081, 1989. 10.2337/diab.38.9.1077 CASPubMedWeb of Science®Google Scholar 31 Lorenzi M, and Cagliero E: Pathobiology of endothelial and other vascular cells in diabetes mellitus. Call for data. Diabetes 40: 653–659, 1991. 10.2337/diab.40.6.653 CASPubMedWeb of Science®Google Scholar 32 Perejda AJ, and Uitto J: Nonenzymatic glycosylation of collagen and other proteins: relationship to development of diabetic complications. Collagen Rel Res 2: 83–90, 1982. 10.1016/S0174-173X(82)80042-3 CASWeb of Science®Google Scholar 33 Cohen MP, Urdanivia E, Surma M, and Wu VY: Increased glycoslyation of glomerular basement membrane collagen in diabetes. Biochem Biophys Res Commun 95: 765–769, 1980. 10.1016/0006-291X(80)90852-9 CASPubMedWeb of Science®Google Scholar 34 Haralson MA, Jacobson HR, and Hoover RL: Collagen polymorphism in cultured rat kidney mesangial cells. Lab Invest 57: 513–523, 1987. CASPubMedWeb of Science®Google Scholar 35 Goldsmith JC, McCormick JJ, and Yen A: Endothelial cell cycle kinetics. Changes in culture and correlation with endothelial properties. Lab Invest 51: 643–647, 1984. CASPubMedWeb of Science®Google Scholar 36 Dichek D, and Quertermous T: Variability in messenger RNA levels in human umbilical vein endothelial cells of different lineage and time in culture. In Vitro Cell Dev Biol 25: 289–292, 1989. 10.1007/BF02628468 CASPubMedWeb of Science®Google Scholar 37 Grant MB, and Guay C: Plasminogen activator production by human retinal endothelial cells of nondiabetic and diabetic origin. Invest Ophthalmol Vis Sci 32: 53–64, 1991. CASPubMedWeb of Science®Google Scholar 38 Rymaszewski Z, Cohen RM, and Chomczynski P: Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro. Proc Natl Acad Sci USA 88: 617–621, 1991. 10.1073/pnas.88.2.617 CASPubMedWeb of Science®Google Scholar 39 Zetter BR: The endothelial cells of large and small blood vessels. Diabetes 30 (Suppl 2): 24–28, 1981. 10.2337/diab.30.2.S24 CASPubMedWeb of Science®Google Scholar 40 King GL, Buzney SM, Kahn CR, Hetu N, Buchwald S, Macdonald SG, and Rand LI: Differential responsiveness to insulin of endothelial and support cells from micro- and macro-vessels. J Clin Invest 71: 974–979, 1983. 10.1172/JCI110852 CASPubMedWeb of Science®Google Scholar 41 Sims DE: The perictye—a review. Tissue Cell 18: 153–174, 1986. 10.1016/0040-8166(86)90026-1 PubMedWeb of Science®Google Scholar 42 Antonelli-Orlidge A, Saunders KB, Smith SR, and D'Amore PA: An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544–4548, 1989. 10.1073/pnas.86.12.4544 CASPubMedWeb of Science®Google Scholar 43 Kelley C, D'Amore P, Hechtman HB, and Shepro D: Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 104: 483–490, 1987. 10.1083/jcb.104.3.483 CASPubMedWeb of Science®Google Scholar 44 Cogan DG, Toussaint D, and Kuwabara T: Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66: 366–378, 1961. 10.1001/archopht.1961.00960010368014 CASPubMedWeb of Science®Google Scholar 45 Kuwabara T, and Cogan DG: Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69: 492–502, 1963. 10.1001/archopht.1963.00960040498013 CASPubMedWeb of Science®Google Scholar 46 Ashton N: Studies of the retinal capillaries in relation to diabetic and other retinopathies. Br J Ophthalmol 47: 521–538, 1963. 10.1136/bjo.47.9.521 CASPubMedGoogle Scholar 47 De Oliveira F: Pericytes in diabetic retinopathy. Br / Ophthalmol 50: 134–143, 1966. 10.1136/bjo.50.3.134 CASPubMedWeb of Science®Google Scholar 48 Speiser P, Gittelsohn AM, and Patz A: Studies on diabetic retinopathy. III. Influence of diabetes on intramural pericytes. Arch Ophthalmol 80: 332–337, 1968. 10.1001/archopht.1968.00980050334007 CASPubMedWeb of Science®Google Scholar 49 Engerman RL: Pathogenesis of diabetic retinopathy. Diabetes 38: 1203–1206, 1989. 10.2337/diab.38.10.1203 CASPubMedWeb of Science®Google Scholar 50 Hohman TC, Nishimura C, and Robison WG: Aldose reductase and polyol in cultured pericytes of human retinal capillaries. Exp Eye Res 48: 55–60, 1989. 10.1016/0014-4835(89)90018-3 CASPubMedWeb of Science®Google Scholar 51 Engerman RL, Pfaffenbach D, and Davis MD: Cell turnover of capillaries. Lab Invest 17: 738–743, 1967. CASPubMedWeb of Science®Google Scholar 52 Sharma NK, Gardiner TA, and Archer DB: A morphologic and autoradiographic study of cell death and regeneration in the retinal microvasculature of normal and diabetic rats. Am J Ophthalmol 100: 51–60, 1985. 10.1016/S0002-9394(14)74982-7 CASPubMedWeb of Science®Google Scholar 53 Reddi AS: Collagen metabolism in the retina of normal and diabetic rats. Exp Eye Res 41: 345–352, 1985. 10.1016/S0014-4835(85)80025-7 CASPubMedWeb of Science®Google Scholar 54 Canfield AE, Schor AM, Loskutoff DJ, Schor SL, and Grant ME: Plasminogen activator inhibitor- type I is a major biosynthetic product of retinal microvascular endothelial cells and pericytes in culture. Biochem J 259: 529–535, 1989. 10.1042/bj2590529 CASPubMedWeb of Science®Google Scholar 55 Buzney SM, Frank RN, Varma SD, Tanishima T, and Gabbay KH: Aldose reductase in retinal mural cells. Invest Ophthalmol Vis Sci 16: 392–396, 1977. CASPubMedWeb of Science®Google Scholar 56 Li W, Shen S, Khatami M, and Rockey JH: Stimulation of retinal capillary pericyte protein and collagen synthesis in culture by high-glucose concentration. Diabetes 33: 785–789, 1984. 10.2337/diabetes.33.8.785 CASPubMedWeb of Science®Google Scholar 57 King GL, Johnson S, and Wu G: Possible growth modulators involved in the pathogenesis of diabetic proliferative retinopathy. In Growth Factors in Health and Disease, B Westermark, C Betsholtz, and B Hökfelt, Eds. Elsevier, New-York, 1990, pp. 303–317. Google Scholar 58 Cohen MP, Frank RN, and Khalifa AA: Collagen production by cultured retinal capillary pericytes. Invest Ophthalmol Vis Sci 19: 90–94, 1980. CASPubMedWeb of Science®Google Scholar 59 Kennedy A, Frank RN, Mancini MA, and Lande M: Collagens of the retinal microvascular basement membrane and of retinal microvascular cells in vitro. Exp Eye Res 42: 177–199, 1986. 10.1016/0014-4835(86)90041-2 CASPubMedWeb of Science®Google Scholar 60 Li W, Khatami M, and Rockey JH: The effects of glucose and an aldose reductase inhibitor on the sorbitol content and collagen synthesis of bovine retinal capillary pericytes in culture. Exp Eye Res 40: 439–444, 1985. 10.1016/0014-4835(85)90156-3 CASPubMedWeb of Science®Google Scholar 61 Li W, Shen S, Robertson GA, Khatami M, and Rockey JH: Increased solubility of newly synthesized collagen in retinal capillary pericytes cultures by nonenzymatic glycosylation. Ophthalmic Res 16: 315–321, 1984. 10.1159/000265336 CASPubMedWeb of Science®Google Scholar 62 Lien YH, Stern R, Fu JCC, and Siegel RC: Inhibition of collagen fibril formation in vitro and subsequent cross-linking by glucose. Science 225: 1489–1491, 1984. 10.1126/science.6147899 CASPubMedWeb of Science®Google Scholar 63 Ferrari-Dileo G, Davis EB, and Anderson DR: Angiotensin binding sites in bovine and human retinal blood vessels. Invest Ophthalmol Vis Sci 28: 1747–1751, 1987. CASPubMedWeb of Science®Google Scholar 64 Takahashi K, Brooks RA, Kanse SM, Ghatei MA, Kohner EM, and Bloom SR: Production of endothelin 1 by cultured bovine retinal endothelial cells and presence of endothelin receptors on associated pericytes. Diabetes 38: 1200–1202, 1989. 10.2337/diabetes.38.9.1200 CASPubMedWeb of Science®Google Scholar 65 Chakravarthy U, and Trimble ER: Endothelin induced pericyte contraction is altered in hyperglycemia. Diabetologia 34 (Suppl 2): A16, 1991. Google Scholar 66 Akagi Y, Kador PF, Kuwabara T, and Kinoshita JH: Aldose reductase localization in human retinal mural cells. Invest Ophthalmol Vis Sci 24: 1516–1519, 1983. CASPubMedWeb of Science®Google Scholar 67 Kern TS, and Engerman RL: Distribution of aldose reductase in ocular tissues. Exp Eye Res 33: 175–182, 1981. 10.1016/S0014-4835(81)80066-8 CASPubMedWeb of Science®Google Scholar 68 Kern TS, and Engerman RL: Hexitol production by canine retinal microvessels. Invest Ophthalmol Vis Set 26: 382–384, 1985. CASPubMedWeb of Science®Google Scholar 69 Chakrabarti S, Sima AAF, Nakajima T, Yagihashi S, and Grene DA: Aldose reductase in the BB rat: isolation, immunological identification and localization in the retina and peripheral nerve. Diabetologia 30: 244–251, 1987. 10.1007/BF00270423 CASPubMedWeb of Science®Google Scholar 70 Li W, Tang L, Zhou Q, Qin M, and Hu T: DNA-synthesis regulation and correlation with inositol triphosphate levels in cultured bovine retinal capillary pericytes. Exp Eye Res 49: 677–683, 1989. 10.1016/S0014-4835(89)80062-4 CASPubMedWeb of Science®Google Scholar 71 Sorbinil Retinopathy Trial Research Group: A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol 108: 1234–1244, 1990. 10.1001/archopht.1990.01070110050024 PubMedWeb of Science®Google Scholar 72 Jaffe EA: Cell biology of endothelial cells. Hum Pathol 18: 234–239, 1987. 10.1016/S0046-8177(87)80005-9 CASPubMedWeb of Science®Google Scholar 73 Vane JR, Anggard EE, and Botting RM: Regulatory functions of the vascular endothelium. N Engl J Med 323: 27–36, 1990. 10.1056/NEJM199007053230106 CASPubMedWeb of Science®Google Scholar 74 Meraji S, Jayakody L, Senaratne MPJ, Thomson ABR, and Kappagoda T: Endothelium-dependent relaxation in aorta of BB rat. Diabetes 36: 978–981, 1987. 10.2337/diabetes.36.8.978 CASPubMedWeb of Science®Google Scholar 75 Dolgov W, Zaikina OE, Bondarenko MF, and Repin VS: Aortic endothelium of alloxan diabetic rabbits: a quantitative study using scanning electron microscopy. Diabetologia 22: 338–343, 1982. 10.1007/BF00253578 CASPubMedWeb of Science®Google Scholar 76 Kohner EM, and Henkind P: Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am J Ophthalmol 69: 403–414, 1970. 10.1016/0002-9394(70)92273-7 CASPubMedGoogle Scholar 77 Archer DB, Amoaku WMK, and Gardiner TA: Radiation retinopathy—clinical, histopathological, ultrastructural and experimental correlations. Eye 5: 239–251, 1991. 10.1038/eye.1991.39 PubMedGoogle Scholar 78 Irvine AR, Alvarado JA, Wara WM, Morris BW, and Wood IS: Radiation retinopathy: an experimental model for the ischemic-proliferative retinopathies. Trans Am Ophthalmol Soc 79: 104–122, 1981. Google Scholar 79 Engerman RL, and Kern TS: Progression of incipient diabetic retinopathy during good glycemie control. Diabetes 36: 808–812, 1987. PubMedWeb of Science®Google Scholar 80 Kwok CF, Goldstein BJ, Muller-Wieland D, Lee TS, Kahn CR, and King GL: Identification of persistent defects in insulin receptor structure and function in capillary endothelial cells from diabetic rats. J Clin Invest 83: 127–136, 1989. 10.1172/JCI113848 CASPubMedWeb of Science®Google Scholar 81 Cohen MP, Surma ML, and Wu VY: In vivo biosynthesis and turnover of glomerular basement membrane in diabetic rats. Am J Physiol 242: F385–F389, 1982. CASPubMedWeb of Science®Google Scholar 82 Brownlee M, and Spiro RG: Glomerular basement membrane metabolism in the diabetic rat: in vivo studies. Diabetes 28: 121–125, 1979. 10.2337/diabetes.28.2.121 CASPubMedWeb of Science®Google Scholar 83 Falk RJ, Scheinman JI, Mauer SM, and Michael AF: Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes 32 (Suppl 2): 34–39, 1983. 10.2337/diab.32.2.S34 PubMedWeb of Science®Google Scholar 84 Desjardins M, Gros F, Wieslander J, Gubler MC, and Bendayan M: Immunogold studies of monomeric elements from the globular domain (NC1) of type IV collagen in renal basement membranes during experimental diabetes in the rat. Diabetologia 33: 661–670, 1990. 10.1007/BF00400567 CASPubMedWeb of Science®Google Scholar 85 Abrahamson DR: Structure and development of the glomerular capillary wall and basement membrane. Am J Physiol 253: F783–F794, 1987. CASPubMedWeb of Science®Google Scholar 86 Sariola H, Kuusela P, and Ekblom P: Cellular origin of fibronectin in interspecies hybrid kidneys. J Cell Biol 99: 2099–2107, 1984. 10.1083/jcb.99.6.2099 CASPubMedWeb of Science®Google Scholar 87 Dixon AJ, Burns J, Dunnill MS, and McGee JD: Distribution of fibronectin in normal and diseased human kidneys J Clin Pathol 33: 1021–1028, 1980. 10.1136/jcp.33.11.1021 CASPubMedWeb of Science®Google Scholar 88 Jerdan JA, and Glaser BM: Retinal microvessel extracellular matrix: an immunofluorescent study. Invest Ophthalmol Vis Sci 27: 194–203, 1986. PubMedWeb of Science®Google Scholar 89 Tooke JE: Microvascular haemodynamics in diabetes mellitus. Clin Sci 70: 119–125, 1986. 10.1042/cs0700119 PubMedWeb of Science®Google Scholar 90 Almer LO, and Nilsson IM: On fibrinolysis in diabetes mellitus. Acta Med Scand 198: 101–106, 1975. 10.1111/j.0954-6820.1975.tb19512.x CASPubMedWeb of Science®Google Scholar 91 Silberbauer K, Schernthaner G, Sinzinger H, Piza-Katzer H, and Winter M: Decreased vascular prostacyclin in juvenile-onset diabetes. N Engl J Med 300: 366–367, 1979. 10.1056/NEJM197902153000715 CASPubMedWeb of Science®Google Scholar 92 Rogers SP, and Larkins RG: Production of 6-oxoprostaglandin F1α by rat aorta. Influence of diabetes, insulin treatment, and caloric deprivation. Diabetes 30: 935–939, 1981. 10.2337/diab.30.11.935 CASPubMedWeb of Science®Google Scholar 93 Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, and Cohen RA, Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med 320: 1025–1030, 1989. 10.1056/NEJM198904203201601 CASPubMedWeb of Science®Google Scholar 94 Lieberman J, and Sastre A: Serum angiotensin-converting enzyme: elevations in diabetes mellitus. Ann Intern Med 93: 825–826, 1980. 10.7326/0003-4819-93-6-825 CASPubMedWeb of Science®Google Scholar 95 Takahashi K, Ghatei MA, Lam HC, O'Halloran DJ, and Bloom SR: Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33: 306–310, 1990. 10.1007/BF00403325 CASPubMedWeb of Science®Google Scholar 96 Auwerx J, Bouillon R, Collen D, and Geboers J: Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8: 68–72, 1988. 10.1161/01.ATV.8.1.68 PubMedWeb of Science®Google Scholar 97 Porta M, La Selva M, Molinatti P, and Molinatti GM: In vivo studies of von Willebrand factor and other endothelial molecules in diabetic microangiopathy. In Endothelial Cell Function in Diabetic Microangiopathy: Problems in Methodology and Clinical Aspects, Vol. 9, GM Molinatti, RS Bar, F Belfiore, and M Porta, Eds. Karger, Basel, 1990, pp. 156–163. Web of Science®Google Scholar 98 Panza J, Quyyumi AA, Brush JE, and Epstein SE: Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323: 22–27, 1990. 10.1056/NEJM199007053230105 CASPubMedWeb of Science®Google Scholar 99 Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, and Burnett JC: Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 325: 997–1001, 1991. 10.1056/NEJM199110033251404 CASPubMedWeb of Science®Google Scholar 100 Wallow IHL, and Engerman RL: Permeability and patency of retinal blood vessels in experimental diabetes. Invest Ophthalmol Vis Sci 16: 447–461, 1977. CASPubMedWeb of Science®Google Scholar 101 Takeichi M: Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455, 1991. 10.1126/science.2006419 CASPubMedWeb of Science®Google Scholar 102 Rodriguez-Boulan E, and Nelson WJ: Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–725, 1989. 10.1126/science.2672330 CASPubMedWeb of Science®Google Scholar 103 Shimomura H, and Spiro RG: Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes: decreased levels of heparan sulfate, proteoglycan and laminin. Diabetes 36: 374–381, 1987. 10.2337/diabetes.36.3.374 CASPubMedWeb of Science®Google Scholar 104 Cohen MP, and Surma ML: Effect of diabetes on in vivo metabolism of [35S]-labeled glomerular basement membrane. Diabetes 33: 8–12, 1984. 10.2337/diabetes.33.1.8 CASPubMedWeb of Science®Google Scholar 105 Moran A, Brown DM, Kim Y, and Klein DJ: Effects of IGF-I and glucose on protein and proteoglycan synthesis by human fetal mesangial cells in culture. Diabetes 40: 1346–1354, 1991. 10.2337/diabetes.40.10.1346 CASPubMedWeb of Science®Google Scholar 106 Betz AL, Bowman PD, and Goldstein GW: Hexose transport in microvascular endothelial cells cultured from bovine retina. Exp Eye Res 36: 269–277, 1983. 10.1016/0014-4835(83)90011-8 CASPubMedWeb of Science®Google Scholar 107 Corkey RF, Corkey BE, and Gimbrone MA: Hexose transport in normal and SV40–transformed human endothelial cells in culture. J Cell Physiol 106: 425–434, 1981. 10.1002/jcp.1041060312 CASPubMedWeb of Science®Google Scholar 108 Lee TS, MacGregor LC, Fluharty SJ, and King GL: Differential regulation of protein kinase C and (Na, K)-adenosine triphosphatase activities by elevated glucose levels in retinal capillary endothelial cells. J Clin Invest 83: 90–94, 1989. 10.1172/JCI113889 CASPubMedWeb of Science®Google Scholar 109 Lorenzi M, Toledo S, Boss GR, Lane MJ, and Montisano DF: The polyol pathway and glucose 6-phosphate in human endothelial cells cultured in high glucose concentrations. Diabetologia 30: 222–227, 1987. 10.1007/BF00270419 CASPubMedWeb of Science®Google Scholar 110 Vinores SA, Campochiaro PA, Williams EH, May EE, Green WR, and Sorenson RL: Aldose reductase expression in human diabetic retina and retinal pigment epithelium. Diabetes 37: 1658–1664, 1988. CASPubMedWeb of Science®Google Scholar 111 Ghahary A, Luo J, Gong Y, Chakrabarti S, Sima AAF, and Murphy LJ: Increased renal aldose reductase activity, immunoreactivity, and mRNA in streptozotocin-induced diabetic rats. Diabetes 38: 1067–1971, 1989. 10.2337/diabetes.38.8.1067 CASPubMedWeb of Science®Google Scholar 112 Cagliero E, Roth T, Roy S, Maiello M, and Lorenzi M: Expression of genes related to the extracellular matrix in human endothelial cells. Differential modulation by elevated glucose concentrations, phorbol esters, and cAMP. J Biol Chem 266: 14244–14250, 1991. CASPubMedWeb of Science®Google Scholar 113 Lorenzi M, Cagliero E, and Toledo S: Glucose toxicity for human endothelial cells in culture: delayed replication, disturbed cell cycle, and accelerated death. Diabetes 34: 621–627, 1985. CASPubMedWeb of Science®Google Scholar 114 Porta M, La Selva M, Bertagna A, and Molinatti GM: High glucose concentrations inhibit DNA synthesis and replication without causing death or impairing injury repair in cultured human endothelial cells. Diabetes Res 7: 59–63, 1988. CASPubMedWeb of Science®Google Scholar 115 Ono H, Umeda F, Inoguchi T, and Ibayashi H: Glucose inhibits prostacyclin production by cultured aortic endothelial cells. Thromb Haemostasis 60: 174–177, 1988. 10.1055/s-0038-1647024 CASPubMedWeb of Science®Google Scholar 116 Lorenzi M, Nordberg JA, and Toledo S: High glucose prolongs cell-cycle traversal of cultured human endothelial cells. Diabetes 36: 1261–1267, 1987. CASPubMedWeb of Science®Google Scholar 117 Lorenzi M, and Toledo S: Myo-inositol enhances the proliferation of human endothelial cells in culture but fails to prevent the delay induced by high glucose. Metabolism 35: 824–829, 1986. 10.1016/0026-0495(86)90223-4 CASPubMedWeb of Science®Google Scholar 118 Cagliero E, Roth T, Roy S, and Lorenzi M: Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes 40: 102–110, 1991. CASPubMedWeb of Science®Google Scholar 119 Lorenzi M, Montisano DF, Toledo S, and Barrieux A: High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest 77: 322–325, 1986.

Referência(s)