On the Treatment of the Kutta-Joukowski Condition in Transonic Flow Computations
1999; Wiley; Volume: 79; Issue: 8 Linguagem: Inglês
10.1002/(sici)1521-4001(199908)79
ISSN1521-4001
AutoresCristian A. Coclici, Wolfgang L. Wendland,
Tópico(s)Spectroscopy and Laser Applications
ResumoZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und MechanikVolume 79, Issue 8 p. 507-534 Original Paper On the Treatment of the Kutta-Joukowski Condition in Transonic Flow Computations C.A. Coclici Dr., C.A. Coclici Dr. [email protected] Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanySearch for more papers by this authorW.L. Wendland Prof. Dr.-Ing., W.L. Wendland Prof. Dr.-Ing. Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanySearch for more papers by this author C.A. Coclici Dr., C.A. Coclici Dr. [email protected] Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanySearch for more papers by this authorW.L. Wendland Prof. Dr.-Ing., W.L. Wendland Prof. Dr.-Ing. Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanySearch for more papers by this author First published: 08 July 1999 https://doi.org/10.1002/(SICI)1521-4001(199908)79:8 3.0.CO;2-BCitations: 2AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A finite element-boundary element coupling procedure is applied to the computation of a transonic, compressible full potential flow past an airfoil. We require the Kutta-Joukowski condition as continuity of the pressure field at the trailing edge. Under the assumption of subsonic flow at the trailing edge and using classical regularity results for the solutions of elliptic first order systems, we prove the Hölder continuity of the velocity in a vicinity of the trailing edge and get a local representation formula for the velocity. The Kutta-Joukowski condition enforces that the so-called stress intensity factor in this representation vanishes. The numerical FEM-BEM coupling procedure is executed in spaces of finite element functions characterized by the linear side condition of vanishing approximate stress intensity factors. The linear side condition is formulated in terms of the Maz'ya functional for the stress intensity factor. Detailed numerical implementation and numerical results are presented. References 1 Adams, R. A.: Sobolev spaces. Academic Press, Boston 1978. Google Scholar 2 Babuška, I.; Aziz, A. K.: Survey lectures on the mathematical foundations of the finite element method. In: A. K. Aziz (ed.): The mathematical foundation of the finite element method with applications to partial differential equations. Academic Press, New York 1972, pp. 3–359. 10.1016/B978-0-12-068650-6.50006-X Google Scholar 3 Bassanini, P.; Casciola, C. M.; Lancia, M. R.; Piva, P.: On the removal of the trailing edge singularity in 3D flows. In: L. Morino; W. L. Wendland (eds.): Boundary integral methods for nonlinear problems. Kluwer Acad. Publ., Dordrecht, Holland, 1997, pp. 1–7. 10.1007/978-94-011-5706-3_1 Google Scholar 4 Bassanini, P.; Casciola, C. M.; Lancia, M. R.; Piva, R.: On the trailing edge singularity and Kutta condition for 3D flows. Eur. J. Mech. B/Fluids 15 (1996), 809–830. Web of Science®Google Scholar 5 Becker, E. B.; Carey, G. F.; Oden, J. T.: Finite elements. Vol. VI: Fluid mechanics. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984. Google Scholar 6 Berger, H.: Finite-Element-Approximationen für transsonische Stromungen. Doctoral Thesis, Universität Stuttgart, Germany, 1989. Google Scholar 7 Berger, H.: A convergent finite element formulation for transonic flows. Numer. Math. 56 (1989), 425–447. 10.1007/BF01396647 Web of Science®Google Scholar 8 Berger, H.; Feistauer, M.: Analysis of the finite element variational crimes in the numerical approximation of transonic flow. Math. Comp. 61 (1993), 493–521. 10.2307/2153238 Web of Science®Google Scholar 9 Berger, H.; Warnecke, G.; Wendland, W. L.: Finite Element-Berechnungen fur transsonische Strömungen unter Berücksichtigung verschiedener Fernfeldrandbedingungen. In: Strümungen mit Ablösungen, DGLR-Bericht 88-05. Bonn 1988, pp. 233–242. Google Scholar 10 Berger, H.; Warnecke, G.; Wendland, W. L.: Finite elements for transonic potential flows. Numer. Meth. Part. Diff. Eqns. 6 (1990), 17–42. 10.1002/num.1690060103 Google Scholar 11 Berger, H.; Warnecke, G.; Wendland, W. L.: Analysis of a FEM/BEM coupling method for transonic flow computations. Math. Comp. 66 (1997), 1407–1440. 10.1090/S0025-5718-97-00878-8 Web of Science®Google Scholar 12 Bers, L.: Existence and uniqueness of subsonic flow past a given profile. Commun. Pure Appl. Math. 7 (1954), 441–504. 10.1002/cpa.3160070303 Web of Science®Google Scholar 13 Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics. In: Surveys in Applied Mathematics III. Wiley, New York 1958. Google Scholar 14 Blum, H.: Numerical treatment of corner and crack singularities. In: E. Stein; W. L. Wendland (eds.): Finite element and boundary element techniques from mathematical and engineering point of view. CIMS Courses and Lectures No. 301. Springer-Verlag, Vienna–New York 1987, pp. 171–211. Google Scholar 15 Bojarski, B.: Subsonic flow of compressible fluid. In: The Mathematical Problems in Fluid Mechanics. Institute of Basic Technical Problems, Polish Academy of Sciences, Warsaw 1967, pp. 9–31. Google Scholar 16 Bojarski, B.: Homeomorphic solutions of Beltrami systems. Dokl. Akad. Nauk 102 (1955), 661–664. Google Scholar 17 Bojarski, B.: Generalized solutions of a system of differential equations of the first order, of elliptic type, with discontinuous coefficients. Matem. Sbornik 43 (1957), 451–503. Google Scholar 18 Bristeau, M. O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O.; Poirier, G.: Application of optimal control and finite element methods to the calculation of transonic flows and incompressible flows. In: B. Hunt (ed.): Numerical Methods in Applied Fluid Dynamics. Academic Press, New York 1980, pp. 203–312. Google Scholar 19 Bristeau, M. O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O.; Poirier, G.: On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. II. Application to transonic flow simulations. Comput. Methods Appl. Mech. Engrg. 51 (1985), 363–394. 10.1016/0045-7825(85)90039-8 Web of Science®Google Scholar 20 Chaplygin, S. A.: On gas jets. Scientific memoirs, Imperial University of Moskow, Mathematical-Physical Section 21 (1902), 1–21 (English Translation, National Advisory Committee for Aeronautics, Technical Memo No. 1063, 1944). Google Scholar 21 Carleman, T.: Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables. Comptes Rendus des Seances de l'Académie des Sciences, Paris 18 (1933), 471–474. Google Scholar 22 Ciarlet, P. G.: The finite element method for elliptic problems, North-Holland, Amsterdam 1978. 10.1016/S0168-2024(08)70178-4 Google Scholar 23 Ciavaldini, J. F.; Pogu, M.; Tournemine, G.: Existence and regularity of stream functions for subsonic flows past profiles with a sharp trailing edge. Arch. Rat. Mech. Anal. 93 (1986), 1–14. 10.1007/BF00250842 Web of Science®Google Scholar 24 Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988), 613–626. 10.1137/0519043 Web of Science®Google Scholar 25 Djaoua, M.: A method of calculation of lifting flows around two-dimensional corner-shaped bodies. Math. Comp. 36 (1981), 405–425. 10.2307/2007650 Web of Science®Google Scholar 26 Feistauer, M.; Felcman, J.; Rokyta, M.; Vlasek, Z.: Finite-element solution of flow problems with trailing edge conditions. J. Comp. Appl. Math. 44 (1992), 131–165. 10.1016/0377-0427(92)90008-L Web of Science®Google Scholar 27 Feistauer, M.; Nečas, J.: On the solvability of transonic potential flow problems. Z. Anal. Anw. 4 (1985), 305–329. 10.4171/ZAA/155 Google Scholar 28 Feistauer, M.; Ženíšek, A.: Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451–475. 10.1007/BF01396664 Web of Science®Google Scholar 29 Frankl, F. I.; Keldysh, Y.: Die äussere Neumann'sche Aufgabe für nichtlineare elliptische Differentialgleichungen mit Anwendung auf die Theorie der Flügel im kompressiblen Gas. Bull. Acad. Sci., URSS 12 (1934), 561–607. Google Scholar 30 Gatica, G. N.; Hsiao, G. C.: The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Numer. Math. 61 (1992), 171–214. 10.1007/BF01385504 Web of Science®Google Scholar 31 Glowinski, R.; Pironneau, O.: On the computation of transonic flows. In: Fujita, H. (ed.): Funct. Anal, and Num. Anal., Jap. Soc. Prom. Sci., Tokyo-Kyoto 1978, pp. 143–173. Google Scholar 32 Göhner, U.; Warnecke, G.: A shock indicator for adaptive transonic flow computations. Numer. Math. 66 (1994), 423–448. 10.1007/BF01385706 Web of Science®Google Scholar 33 Göhner, U.; Warnecke, G.: A second order finite difference error indicator for adaptive transonic flow computations. Numer. Math. 70 (1995), 129–161. 10.1007/s002110050114 Web of Science®Google Scholar 34 Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman Publ., London 1985. Web of Science®Google Scholar 35 Hsiao, G. C.; Marcozzi, M. D.; Zhang, S.: An efficient computational method for the flow past an airfoil. Contemporary Math. 180 (1994), 497–502. 10.1090/conm/180/02011 Google Scholar 36 Hsiao, G. C.; Kopp, P.; Wendland, W. L.: Some applications of a Galerkin-collocation method for boundary integral equations of the first kind. Math. Methods Appl. Sci. 6 (1984), 280–325. 10.1002/mma.1670060119 Google Scholar 37 Hsiao, G. C.; Wendland, W. L.: A finite element method for an integral equation of the first kind. J. Math. Anal. Appl. 58 (1977), 449–481. 10.1016/0022-247X(77)90186-X Web of Science®Google Scholar 38 Jaenicke, J.: über lineare Randwertprobleme der Systeme von zwei linearen partiellen Differentialgleichungen erster Ordnung vom elliptischen Typus. Doctoral Thesis, Technische Universität Berlin, Germany, 1957. Google Scholar 39 Keyfitz, B. L.; Warnecke, G.: The existence of viscous profiles and admissibility for transonic shocks. Commun. Part. Diff. Eqns. 16 (1991), 1197–1221. 10.1080/03605309108820795 Web of Science®Google Scholar 40 Lehman, R. S.: Developments at an analytic corner of solutions of elliptic partial differential equations. J. Mathematics and Mechanics 8 (1959), 727–760. Web of Science®Google Scholar 41 Lerouxé, M. N.: Résolution numérique du problème du potential dans le plan par une méthode variationelle d'éléments finis. Doctoral Thesis, University of Rennes, 1974. Google Scholar 42 Mandel, J.; Nečas, J.: Convergence of finite elements for transonic potential flows. SIAM J. Numer. Anal. 24 (1987), 985–996. 10.1137/0724064 Web of Science®Google Scholar 43 Morawetz, C. S.: Non-existence of transonic flow past a profile III. Commun. Pure Appl. Math. 17 (1964), 357–367. 10.1002/cpa.3160170308 Web of Science®Google Scholar 44 Morawetz, C. S.: On a weak solution for a transonic flow problem. Commun. Pure Appl. Math. 38 (1985), 797–818. 10.1002/cpa.3160380610 Web of Science®Google Scholar 45 Murat, F.: L'injection du cǒne positiv de H-1 dans W-1,q est compact pour tout q 2. Math. Pure Appl. 60 (1981), 309–322. Web of Science®Google Scholar 46 Nazarov, S. A.; Plamenevsky, B. A.: Elliptic problems in domains with piecewise smooth boundaries. Walter de Gruyter, Berlin–New York 1994. 10.1515/9783110848915 Web of Science®Google Scholar 47 Muskhelishvili, N. I.: Singular integral equations. Noordhoff, Groningen 1953. Google Scholar 48 Nečas, J.: Compacité par éntropie et ecoulements de fluides. Lecture Notes Université de Charles et E.N-S., Masson, Paris 1989. Google Scholar 49 Vekua, I. N.: Generalized analytic functions. Pergamon Press, New York 1952. Google Scholar 50 Warnecke, G.: Admissibility of solutions to the Riemann problems for systems of mixed type – transonic small disturbance theory. In: B. L. Keyfitz; M. Shearer (eds.): Nonlinear evolution equations that change type. IMA-Series Volume 27, Springer-Verlag, New York 1990, pp. 258–284. 10.1007/978-1-4613-9049-7_19 Google Scholar 51 Wendland, W. L.: Elliptic systems in the plane. Pitman Publ., London 1979. Google Scholar 52 Zierep, J.: Theoretische Gasdynamik. Braun, Karlsruhe 1976. Google Scholar Citing Literature Volume79, Issue8August 1999Pages 507-534 ReferencesRelatedInformation
Referência(s)