Cell cycle-dependent DHFR and t-PA production in cotransfected, MTX-amplified CHO cells revealed by dual-laser flow cytometry
1990; Elsevier BV; Volume: 188; Issue: 2 Linguagem: Inglês
10.1016/0014-4827(90)90169-b
ISSN1090-2422
AutoresManfred Kubbies, Hannes Stockinger,
Tópico(s)Viral Infectious Diseases and Gene Expression in Insects
ResumoThe cell cycle-dependent regulation of the cellular dihydrofolate reductase content (DHFR) and tissue plasminogen activator (t-PA) production and secretion in plasmid-amplified cells was investigated in the DHFR-negative CHO cells transfected with the plasmid pSV-tPA.dhfr. This plasmid, carrying the dhfr and t-PA gene under control of different promotors, was amplified by serial passages in 5 microM methotrexate (MTX) for dhfr gene amplification. The intracellular amount of DHFR was quantitated in viable cells by MTX-FITC labeling and flow cytometric analysis of the FITC fluorescence. In comparison with the original CHO cells, the pSVtPA.dhfr-amplified cells showed a greater than 230-fold increase in MTX-FITC fluorescence. Using dual laser flow cytometry (uv: vital cell cycle with Hoechst 33342; 488 nm: DHFR with MTX-FITC), we show a maximum increase in the intracellular DHFR content during G1 and/or at G1/S transition (100 to 157%), followed by a continuous increase to 200% during S and G2/M. To determine t-PA production CHO cells were sorted from G1-, early/late S-, and G2/M-phase. After 1-, 2-, and 4-h incubation periods, t-PA production was quantitated using a sensitive t-PA ELISA technique. We found that t-PA production and secretion (2-h assay), unlike the expression of DHFR, increased continuously from relatively 100% in G1 to 127% in early S and reached its maximum of 159% in late S, whereas in G2/M-phase it decreased to 118%. Our results show that in pSVtPA.dhfr-coamplified CHO cells gene products DHFR and t-PA both exhibit different cell cycle-correlated accumulation and secretion, respectively, indicating that the brightest MTX-FITC-positive cells (G2/M) do not display the highest t-PA secretion rate.
Referência(s)