Artigo Revisado por pares

Regular radiation field pulses produced by intracloud lightning discharges

1975; American Geophysical Union; Volume: 80; Issue: 27 Linguagem: Inglês

10.1029/jc080i027p03801

ISSN

2156-2202

Autores

E. Philip Krider, George J. Radda, R. Carl Noggle,

Tópico(s)

Seismic Waves and Analysis

Resumo

Journal of Geophysical Research (1896-1977)Volume 80, Issue 27 p. 3801-3804 Regular radiation field pulses produced by intracloud lightning discharges E. Philip Krider, E. Philip KriderSearch for more papers by this authorGeorge J. Radda, George J. RaddaSearch for more papers by this authorR. Carl Noggle, R. Carl NoggleSearch for more papers by this author E. Philip Krider, E. Philip KriderSearch for more papers by this authorGeorge J. Radda, George J. RaddaSearch for more papers by this authorR. Carl Noggle, R. Carl NoggleSearch for more papers by this author First published: 20 September 1975 https://doi.org/10.1029/JC080i027p03801Citations: 65AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Sequences or bursts of uniform pulses have been recorded during a large fraction of intracloud lightning discharges in Florida and Arizona. The wave form of a typical pulse begins with a fast, large amplitude portion followed by a small and slowly varying overshoot. The full width at half maximum of the large amplitude peak is typically 0.75 μs, and the time intervals between pulses are typically 5 μs, in both maritime and continental storms. The pulse shapes and interval times suggest that the source of these pulses is an intracloud dart-stepped leader process similar to that which has been photographed in discharges to ground. References Appleton, E. V., F. W. Chapman, On the nature of atmospherics, 4, Proc. Roy. Soc. London, Ser. A, 158, 1– 22, 1937. Arnold, H. R., E. T. Pierce, Leader and junction processes in the lightning discharge as a source of VLF atmospherics, Radio Sci., 68D7, 771– 776, 1964. Clarence, N. D., D. J. Malan, Preliminary discharge processes in lightning flashes to ground, Quart, J. Roy. Meteorol. Soc., 83, 161– 172, 1957. Fisher, R. J., M. A. Uman, Measured electric field rise times for first and subsequent lightning return strokes, J. Geophys. Res., 773, 399– 406, 1972. Hewitt, F. J., Radar echoes from interstroke processes in lightning, Proc. Phys. Soc. London, B70, 961– 979, 1957. Isikawa, H., M. Takagi, On the fine structure of atmospherics from near origins, Proc. Res. Inst. Atmos. Nagoya, 2, 9– 25, 1954. Kitagawa, N., M. Brook, A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res., 654, 1189– 1201, 1960. Kitagawa, N., M. Kobayashi, Field-changes and variations of luminosity due to lightning flashes, Recent Advances in Atmospheric Electricity L. G. Smith, 485– 501, Pergamon, New York, 1958. Krider, E. P., R. C. Noggle, Broadband antenna systems for lightning magnetic fields, J. Appl. Meteorol., 142, 252– 256, 1975. Krider, E. P., G. J. Radda, Radiation field wave forms produced by lightning stepped leaders, J. Geophys. Res., 80, 2653, 1975. Ogawa, T., M. Brook, The mechanism of the intracloud lightning discharge, J. Geophys. Res., 6924, 5141– 5150, 1964. Proctor, D. E., A hyperbolic system for obtaining VHF radio pictures of lightning, J. Geophys Res., 766, 1478– 1489, 1971. Schonland, B. F. J., The lightning discharge, Handbuch der Physik S. Flügge, 22, 576– 628, Springer, New York, 1956. Schonland, B. F. J., D. J. Malan, H. Collens, Progressive lightning, 2, Proc. Roy. Soc. London, Ser. A, 152, 595– 625, 1935. Taylor, W. L., Electromagnetic radiation from severe storms in Oklahoma during April 29–30, 1970, J. Geophys. Res., 7836, 8761– 8777, 1973a. Taylor, W. L., Evaluation of an electromagnetic tornado detection technique8th Conference on Severe Local StormsAmer. Meteorol. Soc.Boston, Mass., 1973b. Uman, M. A., D. K. McLain, Radiation field and current of the lightning stepped leader, J. Geophys. Res., 756, 1058– 1066, 1970a. Uman, M. A., D. K. McLain, Lightning return stroke current from magnetic and radiation field measurements, J. Geophys. Res., 7527, 5143– 5147, 1970b. Uman, M. A., D. K. McLain, R. J. Fisher, E. P. Krider, Electric field intensity of the lightning return stroke, J. Geophys. Res., 7818, 3523– 3529, 1973a. Uman, M. A., D. K. McLain, R. J. Fisher, E. P. Krider, Currents in Florida lightning return strokes, J. Geophys. Res., 7818, 3530– 3537, 1973b. Uman, M. A., R. D. Brantley, Y. T. Lin, J. A. Tiller, E. P. Krider, D. K. McLain, Correlated electric and magnetic fields from lightning return strokes, J. Geophys. Res., 803, 373– 376, 1975. Wait, J. R., The propagation of electromagnetic waves along the earth's surface, Electromagnetic Waves R. E. Langer, University of Wisconsin Press, Madison, 1962. Citing Literature Volume80, Issue27Oceans20 September 1975Pages 3801-3804 ReferencesRelatedInformation

Referência(s)