Molecular therapeutics. Methotrexate and its mechanism of action
1996; Wiley; Volume: 39; Issue: 12 Linguagem: Inglês
10.1002/art.1780391203
ISSN1529-0131
Autores Tópico(s)Autoimmune and Inflammatory Disorders Research
ResumoArthritis & RheumatismVolume 39, Issue 12 p. 1951-1960 Special ArticleFree to Read Molecular therapeutics. Methotrexate and its mechanism of action Bruce N. Cronstein MD, Corresponding Author Bruce N. Cronstein MD New York University Medical Center, New YorkProfessor of Medicine and Pathology, Division of Rheumatology, New York University Medical Center, 550 First Avenue, New York, NY 10016Search for more papers by this author Bruce N. Cronstein MD, Corresponding Author Bruce N. Cronstein MD New York University Medical Center, New YorkProfessor of Medicine and Pathology, Division of Rheumatology, New York University Medical Center, 550 First Avenue, New York, NY 10016Search for more papers by this author First published: December 1996 https://doi.org/10.1002/art.1780391203Citations: 191AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Gubner R, August S, Ginsberg V: Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci 221: 176–182, 1951 2 Weinblatt ME, Fraser P: Elevated mean corpuscular volume as a predictor of hematologic toxicity due to methotrexate therapy. Arthritis Rheum 32: 1592–1596, 1989 3 Al-Awadhi A, Dale P, McKendry RJ: Pancytopenia associated with low dose methotrexate therapy: a regional survey. J Rheumatol 20: 1121–1125, 1993 4 Morgan SL, Baggott JE, Vaughn WH, Young PK, Austin JV, Krumdieck CL, Alarcón GS: The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 33: 9–18, 1990 5 Shiroky J, Neville C, Esdaile JM, Choquette D, Zummer M, Hazeltine M, Bykerk V, Kanji M, St-Pierre A, Robidoux L, Bourque L: Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis: results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 36: 795–803, 1993 6 Morgan SL, Baggott JE, Vaughn WH, Austin JS, Veitch TA, Lee JY, Koopman WJ, Krumdieck CL, Alarcón GS: Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis: a double-blind, placebo-controlled trial. Ann Intern Med 121: 833–841, 1994 7 Baggott JE, Morgan SL, Ha T, Alarcón GS, Koopman WJ, Krumdieck CL: Antifolates in rheumatoid arthritis: a hypothetical mechanism of action. Clin Exp Rheumatol 11 (Suppl 8): S101–S105, 1993 8 Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, Trentham DE: Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 312: 818–822, 1985 9 Anderson PA, West SG, O'Dell JR, Via CS, Claypool RG, Kotzin BL: Weekly pulse methotrexate in rheumatoid arthritis: clinical and immunologic effects in a randomized double-blind study. Ann Intern Med 103: 489–496, 1985 10 Kremer JM, Phelps CT: Long-term prospective study of the use of methotrexate in the treatment of rheumatoid arthritis: update after a mean of 90 months. Arthritis Rheum 35: 138–145, 1992 11 Alarcón GS, Schrohenloher RE, Bartolucci AA, Ward JR, Williams HJ, Koopman WJ: Suppression of rheumatoid factor production by methotrexate in patients with rheumatoid arthritis: evidence for differential influences of therapy and clinical status on IgM and IgA rheumatoid factor expression. Arthritis Rheum 33: 1156–1161, 1990 12 Moore S, Ruska K, Peters L, Olsen NJ: Associations of IgA and IgA-rheumatoid factor with disease features in patients with rheumatoid arthritis. Immunol Invest 23: 355–365, 1994 13 Olsen NJ, Teal GP, Brooks RH: IgM-rheumatoid factor and responses to second-line drugs in rheumatoid arthritis. Agents Actions 34: 169–171, 1991 14 Olsen NJ, Murray LM: Antiproliferative effects of methotrexate on peripheral blood mononuclear cells. Arthritis Rheum 32: 378–385, 1989 15 Olsen NJ, Callahan LF, Pincus T: Immunologic studies of rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum 30: 481–488, 1987 16 Feldmann M, Brennan FM, Maini RN: Rheumatoid arthritis. Cell 85: 307–310, 1996 17 Moreland LW, Pratt PW, Mayes MD, Postlethwaite A, Weisman MH, Schnitzer T, Lightfoot R, Calabrese L, Zelinger DJ, Woody JN, Koopman WJ: Double-blind, placebo-controlled multicenter trial using chimeric monoclonal anti-CD4 antibody, cM-T412, in rheumatoid arthritis patients receiving concomitant methotrexate. Arthritis Rheum 38: 1581–1588, 1995 18 Van der Lubbe PA, Dijkmans BAC, Markusse HM, Nässander U, Breedveld FC: A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis. Arthritis Rheum 38: 1097–1106, 1995 19 Weinblatt ME, Trentham DE, Fraser PA, Holdsworth DE, Falchuk KR, Weissman BN, Coblyn JS: Long-term prospective trial of low-dose methotrexate in rheumatoid arthritis. Arthritis Rheum 31: 167–175, 1988 20 Wascher TC, Hermann J, Brezinschek HP, Brezinschek R, Wilders-Truschnig M, Rainer F, Krejs GJ: Cell-type specific response of peripheral blood lymphocytes to methotrexate in the treatment of rheumatoid arthritis. Clin Invest 72: 535–540, 1994 21 Sperling RI, Coblyn JS, Larkin JK, Benincaso AI, Austen KF, Weinblatt ME: Inhibition of leukotriene B4 synthesis in neutrophils from patients with rheumatoid arthritis by a single oral dose of methotrexate. Arthritis Rheum 33: 1149–1155, 1990 22 Sperling RI, Benincaso AI, Anderson RJ, Coblyn JS, Austen KF, Weinblatt ME: Acute and chronic suppression of leukotriene B4 synthesis ex vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum 35: 376–384, 1992 23 Leroux JL, Damon M, Chavis C, Crastes de Paulet A, Blotman F: Effects of a single dose of methotrexate on 5- and 12-lipoxygenase products in patients with rheumatoid arthritis. J Rheumatol 19: 863–866, 1992 24 Hawkes JS, Cleland LG, Proudman SM, James MJ: The effect of methotrexate on ex vivo lipoxygenase metabolism in neutrophils from patients with rheumatoid arthritis. J Rheumatol 21: 55–58, 1994 25 Kremer JM, Lawrence DA, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE, Sherman M: Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis: clinical and immunologic effects. Arthritis Rheum 33: 810–820, 1990 26 Kremer JM, Jubiz W, Michalek A, Rynes RI, Bartholomew LE, Bigaouette J, Timchalk M, Beeler D, Lininger L: Fish-oil fatty acid supplementation in active rheumatoid arthritis: a double-blinded, controlled, crossover study. Ann Intern Med 106: 497–503, 1987 27 Kremer JM: The mechanism of action of methotrexate in rheumatoid arthritis: the search continues. J Rheumatol 21: 1–5, 1994 28 Maini RN, Elliott MJ, Brennan FM, Williams RO, Chu CQ, Paleolog E, Charles PJ, Taylor PC, Feldmann M: Monoclonal anti-TNFα antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol Rev 144: 195–223, 1995 29 Hu SK, Mitcho YL, Oronsky AL, Kerwar SS: Studies on the effect of methotrexate on macrophage function. J Rheumatol 15: 206–209, 1988 30 Connolly KM, Stecher VJ, Danis E, Pruden DJ, LaBrie T: Alteration of interleukin-1 production and the acute phase response following medication of adjuvant arthritic rats with cyclosporin-A or methotrexate. Int J Immunopharmacol 10: 717–728, 1988 31 Chang DM, Baptiste P, Schur PH: The effect of antirheumatic drugs on interleukin 1 (IL-1) activity and IL-1 and IL-1 inhibitor production by human monocytes. J Rheumatol 17: 1148–1157, 1990 32 Segal R, Mozes E, Yaron M, Tartakovsky B: The effects of methotrexate on the production and activity of interleukin-1. Arthritis Rheum 32: 370–377, 1989 33 Meyer FA, Yaron I, Mashiah V, Yaron M: Methotrexate inhibits proliferation but not interleukin 1 stimulated secretory activities of cultured human synovial fibroblasts. J Rheumatol 20: 238–242, 1993 34 Brody M, Bohm I, Bauer R: Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin 1β to the interleukin 1 receptor on target cells. Eur J Clin Chem Clin Biochem 31: 667–674, 1993 35 Furst DE: Practical clinical pharmacology and drug interactions of low-dose methotrexate therapy in rheumatoid arthritis. Br J Rheumatol 34 (Suppl 2): 20–25, 1995 36 Chang DM, Weinblatt ME, Schur PH: The effects of methotrexate on interleukin 1 in patients with rheumatoid arthritis. J Rheumatol 19: 1678–1682, 1992 37 Thomas R, Carroll GJ: Reduction of leukocyte and interleukin-1β concentrations in the synovial fluid of rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum 36: 1244–1252, 1993 38 Williams AS, Punn YL, Amos N, Cooper AM, Williams BD: The effect of liposomally conjugated methotrexate upon mediator release from human peripheral blood monocytes. Br J Rheumatol 34: 241–245, 1995 39 Williams AS, Camilleri JP, Topley N, Williams BD: Prostaglandin and tumor necrosis factor secretion by peritoneal macrophages isolated from normal and arthritic rats treated with liposomal methotrexate. J Pharmacol Toxicol Methods 32: 53–58, 1994 40 Williams AS, Topley N, Amos N, Williams BD: Effect of three lipophilic methotrexate derivatives upon mediator release by lipopolysaccharide-stimulated rat peritoneal macrophages. J Pharm Pharmacol 46: 291–295, 1994 41 Williams AS, Topley N, Williams BD: Effect of liposomally encapsulated MTX-DMPE conjugates upon TNFα and PGE2 release by lipopolysaccharide stimulated rat peritoneal macrophages. Biochim Biophys Acta 1225: 217–222, 1994 42 Smith-Oliver T, Noel LS, Stimpson SS, Yarnall DP, Connolly KM: Elevated levels of TNF in the joints of adjuvant arthritic rats. Cytokine 5: 298–304, 1993 43 Seitz M, Loetscher P, Dewald B, Towbin H, Rordorf C, Gallati H, Baggiolini M, Gerber NJ: Methotrexate action in rheumatoid arthritis: stimulation of cytokine inhibitor and inhibition of chemokine production by peripheral blood mononuclear cells. Br J Rheumatol 34: 602–609, 1995 44 Barrera P, Haagsma CJ, Boerbooms AMT, van Riel PLC, Borm GF, van de Putte LBA, van der Meer JWM: Effect of methotrexate alone or in combination with sulphasalazine on the production and circulating concentrations of cytokines and their antagonists: longitudinal evaluation in patients with rheumatoid arthritis. Br J Rheumatol 34: 747–755, 1995 45 Barrera P, Boerbooms AMT, Janssen EM, Sauerwein RW, Gallati H, Mulder J, de Boo T, Demacker PNM, van de Putte LBA, van der Meer JWM: Circulating soluble tumor necrosis factor receptors, interleukin-2 receptors, tumor necrosis factor α, and interleukin-6 levels in rheumatoid arthritis: longitudinal evaluation during methotrexate and azathioprine therapy. Arthritis Rheum 36: 1070–1079, 1993 46 Crilly A, McInness IB, McDonald AG, Watson J, Capell HA, Madhok R: Interleukin 6 (IL-6) and soluble IL-2 receptor levels in patients with rheumatoid arthritis treated with low dose oral methotrexate. J Rheumatol 22: 224–226, 1995 47 Lacki JK, Klama K, Mackiewicz SH, Mackiewicz U, Muller W: Circulating interleukin-10 and interleukin-6 serum levels in rheumatoid arthritis patients treated with methotrexate or gold salts: preliminary report. Inflamm Res 44: 24–26, 1995 48 Wascher TC, Hermann J, Brezinschek R, Brezinschek HP, Wilders-Truschnig M, Rainer F, Krejs GJ: Serum levels of interleukin-6 and tumour-necrosis-factor-alpha are not correlated to disease activity in patients with rheumatoid arthritis after treatment with low-dose methotrexate. Eur J Clin Invest 24: 73–75, 1994 49 Seitz M, Dewald B, Ceska M, Gerber N, Baggiolini M: Interleukin-8 in inflammatory rheumatic diseases: synovial fluid levels, relation to rheumatoid factors, production by mononuclear cells, and effects of gold sodium thiomalate and methotrexate. Rheumatol Int 12: 159–164, 1992 50 Loetscher P, Dewald B, Baggiolini M, Seitz M: Monocyte chemoattractant protein 1 and interleukin 8 production by rheumatoid synoviocytes: effects of anti-rheumatic drugs. Cytokine 6: 162–170, 1994 51 Hershfield MS, Krodich NM: S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202: 757–760, 1978 52 Kredich NM, Martin DV Jr: Role of S-adenosylhomocysteine in adenosine mediated toxicity in cultured mouse T lymphoma cells. Cell 12: 931–938, 1977 53 Hershfield MS, Kurtzberg J, Aiyar VN, Suh EJ, Schiff R: Abnormalities in S-adenosylhomocysteine hydrolysis, ATP catabolism, and lymphoid differentiation in adenosine deaminase deficiency. Ann N Y Acad Sci 451: 78–86, 1985 54 Palella TD, Schatz RA, Wilens TE, Fox IH: S-Adenosylhomocysteine accumulation and selective cytotoxicity in cultured T- and B-lymphocytes. J Lab Clin Med 100: 269–278, 1982 55 Pike MC, Snyderman R: Transmethylation reactions regulate affinity and functional activity of chemotactic factor receptors on macrophages. Cell 28: 107–114, 1982 56 Pike MC, Kredich NM, Snyderman R: Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis. Proc Natl Acad Sci USA 75: 3928–3932, 1978 57 Johnston JM, Kredich NM: Inhibition of methylation by adenosine in adenosine deaminase-inhibited, phytohemagglutinin-stimulated human lymphocytes. J Immunol 123: 97–103, 1979 58 Furumitsu Y, Yukioka K, Kojima A, Yukioka M, Shichikawa K, Ochi T, Matsui-Yuasa I, Otani S, Nishizawa Y, Morii H: Levels of urinary polyamines in patients with rheumatoid arthritis. J Rheumatol 20: 1661–1665, 1993 59 Yukioka K, Wakitani S, Yukioka M, Furumitsu Y, Shichikawa K, Ochi T, Goto H, Matsui-Yuasa I, Otani S, Nishizawa Y, Morii H: Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J Rheumatol 19: 689–692, 1992 60 Flescher E, Bowlin TL, Talal N: Regulation of IL-2 production by mononuclear cells from rheumatoid arthritis synovial fluids. Clin Exp Immunol 87: 435–437, 1992 61 Flescher E, Bowlin TL, Ballester A, Houk R, Talal N: Increased polyamines may downregulate interleukin 2 production in rheumatoid arthritis. J Clin Invest 83: 1356–1362, 1989 62 Miyasaka N, Nakamura T, Russell IJ, Talal N: Interleukin 2 deficiencies in rheumatoid arthritis and systemic lupus erythematosus. Clin Immunol Immunopathol 31: 109–117, 1984 63 Miyasaka N, Murota N, Yamaoka K, Sato K, Yamada T, Nishido T, Okumura K: Interleukin 2 defect in the peripheral blood and the lung in patients with Sjögren's syndrome. Clin Exp Immunol 65: 497–505, 1986 64 Nesher G, Moore TL: The in vitro effects of methotrexate on peripheral blood mononuclear cells: modulation by methyl donors and spermidine. Arthritis Rheum 33: 954–959, 1990 65 Nesher G, Moore TL, Dorner RW: In vitro effects of methotrexate on peripheral blood monocytes: modulation by folinic acid and S-adenosylmethionine. Ann Rheum Dis 50: 637–641, 1991 66 Krenitsky TA, Rideout JL, Chao EY, Koszalka GW, Gurney F, Crouch RC, Cohn NK, Wolberg G, Vinegar R: Imidazo[4,5-c]-pyridines (3-deazapurines) and their nucleosides as immunosuppressive and antiinflammatory agents. J Med Chem 29: 138–143, 1986 67 Jurgensen CH, Huber BE, Zimmerman TP, Wolberg G: 3-deazaadenosine inhibits leukocyte adhesion and ICAM-1 biosynthesis in tumor necrosis factor-stimulated human endothelial cells. J Immunol 144: 653–661, 1990 68 Jurgensen CH, Wolberg G, Zimmerman TP: Inhibition of neutrophil adherence to endothelial cells by 3-deazaadenosine. Agents Actions 27: 398–400, 1989 69 Fantone JC, Duque RE, Davis BH, Phan SH: 3-deazaadenosine inhibition of stimulus-response coupling in human polymorphonuclear leukocytes. J Leukoc Biol 45: 121–128, 1989 70 Leonard EJ, Skeel A, Chiang PK, Cantoni GL: The action of the adenosylhomocysteine hydrolase inhibitor, 3-deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem Biophys Res Commun 84: 102–109, 1978 71 Zimmerman TP, Wolberg G, Duncan GS: Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: evidence for a methylation reaction essential for cytolysis. Proc Natl Acad Sci USA 75: 6220–6224, 1978 72 Smith DM, Johnson JA, Turner RA: Biochemical perturbations of BW 91Y (3-deazaadenosine) on human neutrophil chemotactic potential and lipid metabolism. Int J Tissue React 13: 1–18, 1991 73 Sung SSJ, Silverstein SC: Inhibition of macrophage phagocytosis by methylation inhibitors: lack of correlation of protein carboxymethylation and phospholipid methylation with phagocytosis. J Biol Chem 260: 546–554, 1985 74 Stopford CR, Wolberg G, Prus KL, Reynolds-Vaughn R, Zimmerman TP: 3-Deazaadenosine-induced disorganization of macrophage microfilaments. Proc Natl Acad Sci USA 82: 4060–4064, 1985 75 Zimmerman TP, Iannone M, Wolberg G: 3-Deazaadenosine: S-adenosylhomocysteine hydrolase-independent mechanism of action in mouse lymphocytes. J Biol Chem 259: 1122–1126, 1984 76 Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, Drake JC, Jolivet J: Polyglutamation of methotrexate: is methotrexate a prodrug? J Clin Invest 76: 907–912, 1985 77 Allegra CJ, Drake JC, Jolivet J, Chabner BA: Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci USA 82: 4881–4885, 1985 78 Baggott JE, Vaughn WH, Hudson BB: Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5′-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem J 236: 193–200, 1986 79 Ha T, Morgan SL, Vaughan WH, Baggott JE: Inhibition of adenosine deaminase and S-adenosyl homocysteine hydrolase by 5-aminoimidazole-4-carboxamide riboside. FASEB J 6: 1210–1215, 1992 80 Luhby AL, Cooperman JH: Aminoimidazole carboxamide excretion in vitamin B12 and folic acid deficiencies. Lancet 2: 1381–1382, 1962 81 Cronstein BN, Eberle MA, Gruber HE, Levin RI: Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 88: 2441–2445, 1991 82 Cronstein BN, Naime D, Ostad E: The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 92: 2675–2682, 1993 83 Asako H, Kubes P, Baethge B, Wolf R, Granger DN: Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation 16: 45–56, 1992 84 Asako H, Wolf RE, Granger DN: Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 104: 31–37, 1993 85 Firestein GS, Boyle D, Bullough DA, Gruber HE, Sajjadi FG, Montag A, Sambol B, Mullane K: Protective effect of an adenosine kinase inhibitor in septic shock. J Immunol 152: 5853–5859, 1994 86 Firestein GS, Bullough DA, Erion MD, Jimenez R, Ramirez-Weinhouse M, Barankiewicz J, Smith CW, Gruber HE, Mullane KM: Inhibition of neutrophil adhesion by adenosine and an adenosine kinase inhibitor: the role of selectins. J Immunol 154: 326–334, 1995 87 Rosengren S, Bong GW, Firestein GS: Anti-inflammatory effects of an adenosine kinase inhibitor: decreased neutrophil accumulation and vascular leakage. J Immunol 154: 5444–5451, 1995 88 Cronstein BN, Naime D, Firestein GS: The antiinflammatory effects of an adenosine kinase inhibitor are mediated by adenosine. Arthritis Rheum 38: 1040–1045, 1995 89 Gadangi P, Longaker M, Naime D, Levin RI, Recht PA, Montesinos MC, Buckley MT, Carlin G, Cronstein BN: The antiinflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol 156: 1937–1941, 1996 90 Baggott JE, Morgan SL, Ha T, Vaughn WH, Hine RJ: Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J 282: 197–202, 1992 91 Bernini JC, Fort DW, Griener JC, Kane BJ, Chappell WB, Kamen BA: Aminophylline for methotrexate-induced neurotoxicity. Lancet 345: 544–547, 1995 92 Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R: Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78: 760–770, 1986 93 Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R: Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 158: 1160–1177, 1983 94 Cronstein BN, Duguma L, Nicholls D, Hutchison A, Williams M: The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors which promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85: 1150–1157, 1990 95 Salmon JE, Cronstein BN: Fcγ receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy: A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145: 2235–2240, 1990 96 Cronstein BN, Levin RI, Philips MR, Hirschhorn R, Abramson SB, Weissmann G: Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 148: 2201–2206, 1992 97 Kammer GM, Birch RE, Polmar SH: Impaired immunoregulation in systemic lupus erythematosus: defective adenosine-induced suppressor T lymphocyte generation. J Immunol 130: 1706–1712, 1983 98 Schultz LA, Kammer GM, Rudolph SA: Characterization of the human T lymphocyte adenosine receptor: comparison of normal and systemic lupus erythematosus cells. FASEB J 2: 244–250, 1988 99 Mandler R, Birch RE, Polmar SH, Kammer GM, Rudolph SA: Abnormal adenosine-induced immunosuppression and cAMP metabolism in T lymphocytes of patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 79: 7542–7546, 1982 100 Kammer GM, Rudolph SA: Regulation of human T lymphocyte surface antigen mobility by purinergic receptors. J Immunol 133: 3298–3302, 1984 101 Kammer GM, Smith JA, Mitchell R: Capping of human T-cell specific determinants: kinetics of capping and receptor reexpression and regulation by the cytoskeleton. J Immunol 130: 38–44, 1983 102 Dong RP, Kameoka J, Hegen M, Tanaka T, Xu Y, Schlossman SF, Morimoto C: Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J Immunol 156: 1349–1355, 1996 103 Parmely MJ, Zhou W-W, Edwards CK III, Borcherding DR, Silverstein R, Morrison DC: Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotoxin challenge. J Immunol 151: 389–396, 1993 104 Bouma MG, Stad RK, van den Wildenberg FAJM, Buurman WA: Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol 153: 4159–4168, 1994 105 Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS: Inhibition of TNFα expression by adenosine: role of A3 adenosine receptors. J Immunol 156: 3435–3442, 1996 106 Le Moine O, Stordeur P, Schandené L, Marchant A, de Groote D, Goldman M, Devière J: Adenosine enhances IL-10 secretion by human monocytes. J Immunol 156: 4408–4414, 1996 107 Firestein GS, Paine MM, Boyle DL: Mechanisms of methotrexate action in rheumatoid arthritis: selective decrease in synovial collagenase gene expression. Arthritis Rheum 37: 193–200, 1994 108 Boyle DL, Sajjadi FG, Firestein GS: Inhibition of synoviocyte collagenase gene expression by adenosine receptor stimulation. Arthritis Rheum 39: 923–930, 1996 109 Merrill JT, Coffey D, Shen C, Zakharenko O, Zhang HW, Lahita RG, Cronstein BN: Mechanisms of rheumatoid nodulosis: methotrexate-enhanced monocyte fusion requires protein synthesis and intact microtubules (abstract). Arthritis Rheum 38 (Suppl 9): S157, 1995 Citing Literature Volume39, Issue12December 1996Pages 1951-1960 ReferencesRelatedInformation
Referência(s)