MicroRNA-372 Is Down-regulated and Targets Cyclin-dependent Kinase 2 (CDK2) and Cyclin A1 in Human Cervical Cancer, Which May Contribute to Tumorigenesis
2011; Elsevier BV; Volume: 286; Issue: 29 Linguagem: Inglês
10.1074/jbc.m111.221564
ISSN1083-351X
AutoresRui-Qing Tian, Xing-Hua Wang, Li-Juan Hou, Wei-Hua Jia, Qian Yang, Yi-Xuan Li, Min Liu, Xin Li, Hua Tang,
Tópico(s)Cancer-related molecular mechanisms research
ResumoMicroRNAs are a class of noncoding RNAs that are ∼22 nucleotides in length. MicroRNAs have been shown to play important roles in cell differentiation and in cancer. Recently, studies have shown that miR-372 is tumorigenic in human reproductive system cancers. However, we provide evidence that miR-372 acts as a tumor suppressor gene in cervical carcinoma. miR-372 was found down-regulated in cervical carcinoma tissues as compared with adjacent normal cervical tissues. Growth curve and FACS assays indicated that ectopic expression of miR-372 suppressed cell growth and induced arrest in the S/G2 phases of cell cycle in HeLa cells. We used bioinformatic predictions to determine that CDK2 and cyclin A1 were possible targets of miR-372 and confirmed this prediction using a fluorescent reporter assay. Taken together, these findings indicate that an anti-oncogenic role of miR-372 may be through control of cell growth and cell cycle progression by down-regulating the cell cycle genes CDK2 and cyclin A1. MicroRNAs are a class of noncoding RNAs that are ∼22 nucleotides in length. MicroRNAs have been shown to play important roles in cell differentiation and in cancer. Recently, studies have shown that miR-372 is tumorigenic in human reproductive system cancers. However, we provide evidence that miR-372 acts as a tumor suppressor gene in cervical carcinoma. miR-372 was found down-regulated in cervical carcinoma tissues as compared with adjacent normal cervical tissues. Growth curve and FACS assays indicated that ectopic expression of miR-372 suppressed cell growth and induced arrest in the S/G2 phases of cell cycle in HeLa cells. We used bioinformatic predictions to determine that CDK2 and cyclin A1 were possible targets of miR-372 and confirmed this prediction using a fluorescent reporter assay. Taken together, these findings indicate that an anti-oncogenic role of miR-372 may be through control of cell growth and cell cycle progression by down-regulating the cell cycle genes CDK2 and cyclin A1.
Referência(s)