Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog,Rana perezi
2000; Wiley; Volume: 419; Issue: 4 Linguagem: Inglês
10.1002/(sici)1096-9861(20000417)419
ISSN1096-9861
AutoresMargarita Muñoz, Oscar Marı́n, Agustı́n González,
Tópico(s)Physiological and biochemical adaptations
ResumoJournal of Comparative NeurologyVolume 419, Issue 4 p. 451-470 Article Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog, Rana perezi Margarita Muñoz, Margarita Muñoz Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, SpainSearch for more papers by this authorOscar Marín, Oscar Marín Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, Langley Porter Psychiatric Institute, University of California, San Francisco, California 94143-0984Search for more papers by this authorAgustín González, Corresponding Author Agustín González [email protected] Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 SpainSearch for more papers by this author Margarita Muñoz, Margarita Muñoz Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, SpainSearch for more papers by this authorOscar Marín, Oscar Marín Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, Langley Porter Psychiatric Institute, University of California, San Francisco, California 94143-0984Search for more papers by this authorAgustín González, Corresponding Author Agustín González [email protected] Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 SpainSearch for more papers by this author First published: 31 March 2000 https://doi.org/10.1002/(SICI)1096-9861(20000417)419:4 3.0.CO;2-MCitations: 34Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The localization of nitrergic cells and fibers and cholinergic cells has been analyzed in the spinal cord of the anuran amphibian Rana perezi. Histochemistry for nicotinamide adenine dinucleotide phosphate–diaphorase and nitric oxide synthase immunohistochemistry revealed a concurrent pattern of labeled structures. A large population of nitrergic spinal neurons was found from the level of the obex to the filum terminale. They are abundant in the dorsal horn and intermediate gray matter, but also occur in territories of the ventral horn and, only occasionally, in somatic motoneurons. Numerous nitrergic fibers were present in the spinal white matter, particularly in the dorsal and dorsolateral funiculi. A special arrangement of nitrergic axons is present in Lissauer's tract, where a collateral system is formed. Cholinergic cells, revealed by choline acetyltransferase immunohistochemistry, were observed throughout the spinal cord. The somatic motoneurons were the most conspicuously immunoreactive cells. A large population of cholinergic cells forms a discontinuous column in the intermediate gray, from the third spinal segment to lumbar segments. These cells were organized in a medially located or intercalated cell group, and a laterally located intermediolateral group. Numerous scattered cholinergic cells were present in the central zone of the ventral horn and were absent in the dorsal horn. Double-labeling experiments revealed a high degree of codistribution of nitrergic and cholinergic cells, mainly in the intermediate gray, but colocalization of both markers in the same neurons was not found. This result contrasts with the situation found in mammals and raises the question of whether coexpression of both substances was acquired in spinal cord neurons through evolution only in amniotes or, even, only in mammals. J. Comp. Neurol. 419:451–470, 2000. © 2000 Wiley-Liss, Inc. LITERATURE CITED Aimi Y, Fujimura M, Vincent SR, Kimura H. 1991. Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat. J Comp Neurol 306: 382–392. 10.1002/cne.903060303 CASPubMedWeb of Science®Google Scholar Alonso JR, Arévalo R, Porteros A, Briüón JG, García-Ojeda E, Aijón J. 1995. NADPH-diaphorase staining in the central nervous system. Neurosci Protocols 95: 1–11. Google Scholar Anderson CR. 1992. NADPH diaphorase-positive neurons in the rat spinal cord includes a subpopulation of autonomic preganglionic neurons. Neurosci Lett 139: 280–284. 10.1016/0304-3940(92)90571-N CASPubMedWeb of Science®Google Scholar Antal M, Tornai I, Székely G. 1980. Longitudinal extent of dorsal root fibres in the spinal cord and brain stem of the frog. Neuroscience 5: 1311–1322. 10.1016/0306-4522(80)90203-1 CASPubMedWeb of Science®Google Scholar Arévalo R, Alonso JR, García OE, Briüón JG, Crespo C, Aijón J. 1995. NADPH-diaphorase in the central nervous system of the tench (Tinca tinca L., 1758). J Comp Neurol 352: 398–420. 10.1002/cne.903520307 CASPubMedWeb of Science®Google Scholar Barber R, Phelps P, Houser C, Crawford G, Salvaterra P, Vaughn J. 1984. The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 229: 329–346. 10.1002/cne.902290305 CASPubMedWeb of Science®Google Scholar Blottner D, Baumgarten HG. 1992. Nitric oxide synthase (NOS)-containing sympathoadrenal cholinergic neurons of the rat IML-cell column: evidence from histochemistry, immunohistochemistry and retrograde labeling. J Comp Neurol 316: 45–55. 10.1002/cne.903160105 CASPubMedWeb of Science®Google Scholar Borges LF, Iversen SD. 1986. Topography of choline acetyltransferase immunoreactive neurons and fibers in the rat spinal cord. Brain Res 362: 140–148. 10.1016/0006-8993(86)91407-1 CASPubMedWeb of Science®Google Scholar Briggs CA. 1992. Potentiation of nicotinic transmission in the rat superior cervical sympathetic ganglion: effects of cyclic GMP and nitric oxide generators. Brain Res 573: 139–146. 10.1016/0006-8993(92)90123-Q CASPubMedWeb of Science®Google Scholar Brüning G. 1992. Localization of NADPH diaphorase, a histochemical marker for nitric oxide synthase, in the mouse spinal cord. Acta Histochem 93: 397–401. 10.1016/S0065-1281(11)80109-1 CASPubMedWeb of Science®Google Scholar Brüning G. 1993. Localization of NADPH-diaphorase in the brain of the chicken. J Comp Neurol 334: 192–208. 10.1002/cne.903340204 PubMedWeb of Science®Google Scholar Brüning G. 1994. Comparative localization of nitric oxide synthase in the vertebrate spinal cord. Soc Neurosci Abstr 20: 1419. Google Scholar Brüning G, Hauswedell A. 1998. Localization of choline acetyltransferase and nitric oxide synthase in the chicken spinal cord. Eur J Neurosci 10: 197. Google Scholar Brüning G, Mayer B. 1996. Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis. Brain Res 741: 331–343. 10.1016/S0006-8993(96)00944-4 PubMedWeb of Science®Google Scholar Brüning G, Wiese S, Mayer B. 1994. Nitric oxide synthase in the brain of the turtle Pseudemys scripta elegans. J Comp Neurol 348: 183–206. 10.1002/cne.903480203 CASPubMedWeb of Science®Google Scholar Brüning G, Katzbach R, Mayer B. 1995. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, Carassius auratus. J Comp Neurol 358: 353–382. 10.1002/cne.903580305 CASPubMedWeb of Science®Google Scholar Campbell HL, Beattie MS, Bresnahan JC. 1994. Distribution and morphology of sacral spinal cord neurons innervating pelvic structures in Xenopus laevis. J Comp Neurol 347: 619–627. 10.1002/cne.903470411 Google Scholar Crowe MJ, Brown TJ, Bresnahan JC, Beattie MS. 1995. Distribution of NADPH-diaphorase reactivity in the spinal cord of metamorphosing and adult Xenopus laevis. Brain Res Dev Brain Res 86: 155–166. 10.1016/0165-3806(95)00021-5 CASPubMedWeb of Science®Google Scholar de Groat WC. 1976. Mechanisms underlying recurrent inhibition in the sacral parasympathetic outflow to the urinary bladder. J Physiol (Lond) 257: 503–513. 10.1113/jphysiol.1976.sp011381 CASPubMedWeb of Science®Google Scholar de Groat WC, Nadelhaft I, Milne RJ, Booth AM, Morgan C, Thor K. 1981. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J Auton Nerv Syst 3: 135–160. 10.1016/0165-1838(81)90059-X CASPubMedWeb of Science®Google Scholar Dun NJ, Dun SL, Förstermann U, Tseng LF. 1992. Nitric oxide synthase immunoreactivity in rat spinal cord. Neurosci Lett 147: 217–220. 10.1016/0304-3940(92)90599-3 CASPubMedWeb of Science®Google Scholar Dun NJ, Dun SL, Wu SY, Förstermann U, Schmidt H, Tseng LF. 1993. Nitric oxide synthase immunoreactivity in the rat, mouse, cat and squirrel monkey spinal cord. Neuroscience 54: 845–857. 10.1016/0306-4522(93)90579-5 CASPubMedWeb of Science®Google Scholar Ebbesson SOE. 1976. Morphology of the spinal cord. In: R Llinás, W Precht, editors. Frog neurobiology. Berlin: Springer-Verlag. p 679–706. 10.1007/978-3-642-66316-1_23 Google Scholar Egberongbe YI, Gentleman SM, Falkai P, Bogerts B, Polak JM, Roberts GW. 1994. The distribution of nitric oxide synthase immunoreactivity in the human brain. Neuroscience 59: 561–578. 10.1016/0306-4522(94)90177-5 CASPubMedWeb of Science®Google Scholar Frank E, Westerfield M. 1982. Synaptic organization of sensory and motor neurons innervating triceps brachii muscles in the bullfrog. J Physiol (Lond) 324: 479–494. 10.1113/jphysiol.1982.sp014125 CASPubMedWeb of Science®Google Scholar Gillberg PG, Askmark H, Aquilonius SM. 1990. Spinal cholinergic mechanisms. Prog Brain Res 84: 361–370. 10.1016/S0079-6123(08)60919-X CASPubMedWeb of Science®Google Scholar Gonzales MF, Sharp FR, Sagar SM. 1987. Axotomy increases NADPH-diaphorase staining in rat vagal motor neurons. Brain Res 18: 417–427. Google Scholar González A, Muñoz A, Muñoz M, Marín O, Arévalo R, Porteros A, Alonso JR. 1996. Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles waltl) and its relation to catecholaminergic neuronal structures. Brain Res 727: 49–64. 10.1016/0006-8993(96)00354-X CASPubMedWeb of Science®Google Scholar Grosman DD, Lorenzi MV, Trinidad AC, Strauss WL. 1995. The human choline acetyltransferase gene encodes two proteins. J Neurochem 65: 484–491. 10.1046/j.1471-4159.1995.65020484.x CASPubMedWeb of Science®Google Scholar Haley JE, Dickenson AH, Schachter M. 1992. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology 31: 251–258. 10.1016/0028-3908(92)90175-O CASPubMedWeb of Science®Google Scholar Herbison AE, Shimonian SX, Norris PJ, Emson PC. 1996. Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 8: 73–82. 10.1111/j.1365-2826.1996.tb00688.x CASPubMedWeb of Science®Google Scholar Holmqvist BI, Östholm T, Alm P, Ekström P. 1994. Nitric oxide synthase in the brain of a teleost. Neurosci Lett 171: 205–208. 10.1016/0304-3940(94)90640-8 CASPubMedWeb of Science®Google Scholar Horn JP, Stofer WD. 1988. Spinal origins of preganglionic B and C neurons that innervate paravertebral sympathetic ganglia nine and ten of the bullfrog. J Comp Neurol 268: 71–83. 10.1002/cne.902680108 CASPubMedWeb of Science®Google Scholar Hulshof JBE, de Boer-van Huizen R, ten Donkelaar HJ. 1987. The distribution of motoneurons supplying hind limb muscles in the clawed toad, Xenopus laevis. Acta Morphol Neerl-Scand 25: 1–16. Google Scholar Jhaveri S, Frank E. 1983. Central projections of the brachial nerve in bullfrogs: muscle and cutaneous afferents project to different regions of the spinal cord. J Comp Neurol 221: 304–312. 10.1002/cne.902210306 CASPubMedWeb of Science®Google Scholar Kalb RC, Agostini J. 1993. Molecular evidence for nitric oxide-mediated motor neuron development. Neuroscience 57: 1–8. 10.1016/0306-4522(93)90107-Q CASPubMedWeb of Science®Google Scholar Kanda K. 1996. Expression of neuronal nitric oxide synthase in spinal motoneurons in aged rats. Neurosci Lett 219: 41–44. 10.1016/S0304-3940(96)13170-0 CASPubMedWeb of Science®Google Scholar Kato T, Murashima YL. 1985. Choline acetyltransferase activities in single motor neurons from vertebrate spinal cords. J Neurochem 44: 675–679. 10.1111/j.1471-4159.1985.tb12867.x CASPubMedWeb of Science®Google Scholar Kitto KF, Haley JE, Wilcox GL. 1992. Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett 148: 1–5. 10.1016/0304-3940(92)90790-E CASPubMedWeb of Science®Google Scholar Kosaka T, Tauchi M, Dahl JL. 1988. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp Brain Res 70: 605–617. 10.1007/BF00247609 CASPubMedWeb of Science®Google Scholar Leight PN, Connick JH, Stone TW. 1990. Distribution of NADPH-diaphorase positive cells in the rat brain. Comp Biochem Physiol 97C: 259–264. Google Scholar Light AR, Metz C. 1978. The morphology of the spinal cord efferent and afferent neurons contributing to the ventral roots of the cat. J Comp Neurol 179: 501–516. 10.1002/cne.901790304 CASPubMedWeb of Science®Google Scholar Marín O, Smeets WJAJ, González A. 1997. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. J Comp Neurol 382: 499–534. 10.1002/(SICI)1096-9861(19970616)382:4 3.0.CO;2-Y CASPubMedWeb of Science®Google Scholar Marsala J, Vanicky I, Marsala M, Jalc P, Orendacova J, Taira Y. 1998. Reduced nicotinamide adenine dinucleotide phosphate diaphorase in the spinal cord of dogs. Neuroscience 85: 847–862. 10.1016/S0306-4522(97)00690-8 CASPubMedWeb of Science®Google Scholar Marsala J, Marsala M, Vanicky I, Taira Y. 1999. Localization of NADPHd-exhibiting neurons in the spinal cord of the rabbit. J Comp Neurol 406: 263–284. 10.1002/(SICI)1096-9861(19990405)406:2 3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar Mawe GM, Bresnahan JC, Beattie MS. 1986. A light and electron microscopic analysis of the sacral parasympathetic nucleus after labeling primary afferent and efferent elements with HRP. J Comp Neurol 250: 33–57. 10.1002/cne.902500104 CASPubMedWeb of Science®Google Scholar McMahon SB, Lewin GR, Wall PD. 1993. Central hyperexcitability triggered by noxious inputs. Curr Opin Neurobiol 3: 602–610. 10.1016/0959-4388(93)90062-4 CASPubMedGoogle Scholar McNeill D, Traugh NEJ, Vaidya AM, Hua HT, Papka RE. 1992. Origin and distribution of NADPH-diaphorase-positive neurons and fibers innervating the urinary bladder of the rat. Neurosci Lett 147: 33–36. 10.1016/0304-3940(92)90768-3 CASPubMedWeb of Science®Google Scholar Medina L, Reiner A. 1994. Distribution of choline acetyltransferase immunoreactivity in the pigeon brain. J Comp Neurol 342: 497–537. 10.1002/cne.903420403 CASPubMedWeb of Science®Google Scholar Medina L, Smeets WJAJ, Hoogland PV, Puelles L. 1993. Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard Gallotia galloti. J Comp Neurol 331: 261–285. 10.1002/cne.903310209 CASPubMedWeb of Science®Google Scholar Meller ST, Gebhart GF. 1993. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52: 127–136. 10.1016/0304-3959(93)90124-8 CASPubMedWeb of Science®Google Scholar Meller ST, Pechman PS, Gebhart GF, Maves TJ. 1992. Nitric oxide mediates the thermal hyperalgesia produced in a model of neurophatic pain in the rat. Neuroscience 50: 7–10. 10.1016/0306-4522(92)90377-E CASPubMedWeb of Science®Google Scholar Mizukawa K, McGeer PL, Vincent SR, McGeer EG. 1989. Distribution of reduced-nicotinamide-adenine-dinucleotide-phosphate diaphorase-positive cells and fibers in the cat central nervous system. J Comp Neurol 279: 281–311. 10.1002/cne.902790210 CASPubMedWeb of Science®Google Scholar Moore PK, Oluyomi AO, Babbedge RC, Walace P, Hart SL. 1991. L-NG-nitroarginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol 38: 198–202. Google Scholar Morgan C, Nadelhaft I, de Groat WC. 1979. Location of bladder preganglionic neurons within the sacral parasympathetic nucleus of the cat. Neurosci Lett 14: 189–194. 10.1016/0304-3940(79)96146-9 CASPubMedWeb of Science®Google Scholar Morgan C, Nadelhaft I, de Groat WC. 1981. The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201: 415–440. 10.1002/cne.902010308 CASPubMedWeb of Science®Google Scholar Muñoz A, Muñoz M, González A, ten Donkelaar HJ. 1995. Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis. J Comp Neurol 363: 197–220. 10.1002/cne.903630204 CASPubMedWeb of Science®Google Scholar Muñoz A, Muñoz M, González A, ten Donkelaar HJ. 1996. Evidence for an anuran homologue of the mammalian spinocervicothalamic system: An in vitro tract-tracing study in Xenopus laevis. Eur J Neurosci 8: 1390–1400. 10.1111/j.1460-9568.1996.tb01601.x CASPubMedWeb of Science®Google Scholar Muñoz A, Muñoz M, González A, ten Donkelaar HJ. 1997. Spinal ascending pathways in amphibians: cells of origin and main targets. J Comp Neurol 378: 205–228. 10.1002/(SICI)1096-9861(19970210)378:2 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Muñoz M, Muñoz A, Marín O, Alonso JR, Arévalo R, Porteros A, González A. 1996. Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi. J Comp Neurol 367: 54–69. 10.1002/(SICI)1096-9861(19960325)367:1 3.0.CO;2-I CASPubMedWeb of Science®Google Scholar Nadelhaft I, de Groat WC, Morgan C. 1986. The distribution and morphology of parasympathetic preganglionic neurons in the cat sacral spinal cord as revealed by horseradish peroxidase applied to the sacral ventral roots. J Comp Neurol 249: 48–56. 10.1002/cne.902490105 CASPubMedWeb of Science®Google Scholar Oka Y, Ohtani R, Satou M, Ueda K. 1989. Location of forelimb motoneurons in the japanese toad (Bufo japonicus): a horseradish peroxidase study. J Comp Neurol 286: 376–383. 10.1002/cne.902860307 Google Scholar Panzica GC, Arévalo R, Sánchez F, Alonso JR, Aste N, Viglietti PC, Aijón J, Vázquez R. 1994. Topographical distribution of reduced nicotinamide adenine dinucleotide phosphate-diaphorase in the brain of the Japanese quail. J Comp Neurol 342: 97–114. 10.1002/cne.903420110 CASPubMedWeb of Science®Google Scholar Papka RE, McCurdy JR, Williams SJ, Mayer B, Marson L, Platt KB. 1995. Parasympathetic preganglionic neurons in the spinal cord involved in uterine innervation are cholinergic and nitric oxide-containing. Anat Rec 241: 554–562. 10.1002/ar.1092410413 PubMedWeb of Science®Google Scholar Peruzzi D, Forehand CJ. 1993. Segmental restriction and target specificity of bullfrog preganglionic neurons that exhibit galanin-like immunoreactivity. Auton Nerv Syst 45: 201–213. 10.1016/0165-1838(93)90052-V CASPubMedWeb of Science®Google Scholar Phelps PE, Barber RP, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE. 1984. Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: an immunocytochemical study. J Comp Neurol 229: 347–361. 10.1002/cne.902290306 CASPubMedWeb of Science®Google Scholar Pullen AH, Humphreys P. 1995. Diversity in localization of nitric oxide synthase antigen and NADPH-diaphorase histochemical staining in sacral somatic motor neurons of the cat. Neurosci Lett 196: 33–36. 10.1016/0304-3940(95)11831-G CASPubMedWeb of Science®Google Scholar Radmilovich M, Fernández A, Trujillo-Cenóz O. 1997. Localization of NADPH-diaphorase containing neurons in the spinal dorsal horn and spinal sensory ganglia in the turtle Chrysemys d`orbigny. Exp Brain Res 113: 455–464. 10.1007/PL00005598 CASPubMedWeb of Science®Google Scholar Ribeiro-da-Silva A, Cuello AC. 1990. Choline acetyltransferase-immunoreactive profiles are presynaptic to primary sensory fibers in the rat superficial dorsal horn. J Comp Neurol 295: 370–384. 10.1002/cne.902950303 CASPubMedWeb of Science®Google Scholar Robertson D. 1987. Sympathetic preganglionic neurons in frog spinal cord. Auton Nerv Syst 18: 1–11. 10.1016/0165-1838(87)90128-7 Google Scholar Rosenthal BM, Cruce WLR. 1985. Distribution and ultrastructure of primary afferent axons in Lissauer's tract in the northern leopard frog (Rana pipiens). Brain Behav Evol 27: 195–214. Google Scholar Rubin DI, Mendell LM. 1980. Location of motoneurons supplying muscles in normal and grafted supernumerary limbs of Xenopus laevis. J Comp Neurol 192: 703–715. 10.1002/cne.901920406 CASPubMedWeb of Science®Google Scholar Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH, Hanley DF. 1994. Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59: 447–456. 10.1016/0306-4522(94)90608-4 CASPubMedWeb of Science®Google Scholar Schober A, Malz CR, Meyer DL. 1993. Enzymehistochemical demonstration of nitric oxide synthase in the diencephalon of the rainbow trout (Oncorhynchus mickiss). Neurosci Lett 151: 67–70. 10.1016/0304-3940(93)90047-O CASPubMedWeb of Science®Google Scholar Schober A, Malz CR, Schober W, Meyer DL. 1994. NADPH-diaphorase in the central nervous system of the larval lamprey (Lampetra planeri). J Comp Neurol 345: 94–104. 10.1002/cne.903450107 CASPubMedWeb of Science®Google Scholar Sherriff FE, Henderson Z. 1994. A cholinergic propriospinal innervation of the rat spinal cord. Brain Res 634: 150–154. 10.1016/0006-8993(94)90268-2 CASPubMedWeb of Science®Google Scholar Sherriff FE, Henderson ZH, Morrison JFB. 1991. Further evidence for the absence of a descending cholinergic projection from the brainstem to the spinal cord in the rat. Neurosci Lett 128: 52–56. 10.1016/0304-3940(91)90758-L CASPubMedWeb of Science®Google Scholar Shiromani PJ, Armstrong DM, Bruce G, Hersh LB, Groves PM, Gillin JC. 1987. Relation of pontine choline acetyltransferase immunoreactive neurons with cells which increase discharge during REM sleep. Brain Res Bull 18: 447–455. 10.1016/0361-9230(87)90019-0 CASPubMedWeb of Science®Google Scholar Shu S, Ju G, Fan L. 1988. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85: 169–171. 10.1016/0304-3940(88)90346-1 CASPubMedWeb of Science®Google Scholar Smeets WJAJ, Alonso JR, González A. 1997. Distribution of NADPH-diaphorase and nitric oxide synthase in relation to catecholaminergic neuronal structures in the brain of the lizard Gekko gecko. J Comp Neurol 377: 121–141. 10.1002/(SICI)1096-9861(19970106)377:1 3.0.CO;2-T CASPubMedWeb of Science®Google Scholar Smith PA. 1994. Amphibian sympathetic ganglia: an owner's and operator's manual. Prog Neurobiol 43: 439–510. 10.1016/0301-0082(94)90062-0 CASPubMedWeb of Science®Google Scholar Smithson IL, Benarroch EE. 1996. Organization of NADPH-diaphorase-reactive neurons and catecholaminergic fibers in human intermediolateral cell column. Brain Res 723: 218–222. 10.1016/0006-8993(96)00257-0 CASPubMedWeb of Science®Google Scholar Spike RC, Todd AJ, Johnston HM. 1993. Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol 335: 320–333. 10.1002/cne.903350303 CASPubMedWeb of Science®Google Scholar Sternberger LA. 1979. Immunocytochemistry. New York: John Wiley & Sons. Google Scholar ten Donkelaar HJ. 1982. Organization of descending pathways to the spinal cord in amphibians and reptiles. Prog Brain Res 57: 25–67. 10.1016/S0079-6123(08)64123-0 CASPubMedWeb of Science®Google Scholar ten Donkelaar HJ. 1998. Anurans. In: R Nieuwenhuys, HJ ten Donkelaar, C Nicholson, editors. The central nervous system of vertebrates. Berlin: Springer Verlag. p 1151–1314. 10.1007/978-3-642-18262-4_19 Google Scholar Terenghi G, Riveros-Montero V, Hudson LD, Ibrahim NBN, Polak JM. 1993. Immunohistochemistry of nitric oxide synthase demonstrates immunoreactive neurons in spinal cord and dorsal root ganglia of man and rat. J Neurol Sci 118: 34–37. 10.1016/0022-510X(93)90242-Q CASPubMedWeb of Science®Google Scholar Thiriet G, Kempf J, Ebel A. 1992. Distribution of cholinergic neurons in the chick spinal cord during embryonic development. Comparison of ChAT immunocytochemistry with AChE histochemistry. Int J Dev Neurosci 10: 459–466. 10.1016/0736-5748(92)90037-Z CASPubMedWeb of Science®Google Scholar Valtschanoff JG, Weinberg RJ, Rustioni A. 1992a. NADPH diaphorase in the spinal cord of rats. J Comp Neurol 321: 209–222. 10.1002/cne.903210204 CASPubMedWeb of Science®Google Scholar Valtschanoff JG, Weinberg RJ, Rustioni A, Schmidt HHHW. 1992b. Nitric oxide synthase and GABA colocalize in lamina II of rat spinal cord. Neurosci Lett 148: 6–10. 10.1016/0304-3940(92)90791-5 CASPubMedWeb of Science®Google Scholar Verge VMK, Xu Z, Xu XJ, Wiesenfeld-Hallin Z, Hökfelt T. 1992. Marked increase in nitric oxide synthase mRNA in dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci USA 89: 11618–11621. Google Scholar Villani L, Guarnieri T. 1995. Localization of NADPH-diaphorase in the goldfish brain. Brain Res 679: 261–266. 10.1016/0006-8993(95)00240-Q CASPubMedWeb of Science®Google Scholar Vizzard MA. 1997. Increased expression of neuronal nitric oxide synthase in bladder afferent and spinal pathways following spinal cord injury. Dev Neurosci 19: 232–246. 10.1159/000111212 CASPubMedWeb of Science®Google Scholar Vizzard MA, de Groat WC. 1996. Increased expression of neuronal nitric oxide synthase in bladder afferent pathways following chronic irritation of the urinary tract. J Comp Neurol 370: 191–202. 10.1002/(SICI)1096-9861(19960624)370:2 3.0.CO;2-Y PubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, de Groat WC. 1993a. Localization of NADPH diaphorase in pelvic afferent and efferent pathways of the rat. Neurosci Lett 152: 72–76. 10.1016/0304-3940(93)90486-5 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, de Groat WC. 1993b. The effect of rhizotomy on NADPH diaphorase staining in the lumbar spinal cord of the rat. Brain Res 607: 349–353. 10.1016/0006-8993(93)91530-6 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, Erickson VL, Stewart RJ, Roppolo JR, De Groat WC. 1994a. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat. J Comp Neurol 339: 62–75. 10.1002/cne.903390107 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, Förstermann U, de Groat WC. 1994b. Ontogeny of nitric oxide synthase in the lumbosacral spinal cord of the neonatal rat. Brain Res Dev Brain Res 81: 201–217. 10.1016/0165-3806(94)90307-7 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, Förstermann U, de Groat WC. 1994c. Differential distribution of nitric oxide synthase in neural pathways to the urogenital organs (urethra, penis, urinary bladder) of the rat. Brain Res 646: 279–291. 10.1016/0006-8993(94)90090-6 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, Roppolo JR, Förstermann U, De Groat WC. 1994d. Differential localization of neuronal nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in the cat spinal cord. Cell Tissue Res 278: 299–309. 10.1007/BF00414174 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, de Groat WC. 1995a. Increased expression of neuronal nitric oxide synthase (NOS) in visceral neurons after nerve injury. J Neurosci 15: 4033–4045. CASPubMedWeb of Science®Google Scholar Vizzard MA, Erdman SL, de Groat WC. 1995b. Increased expression of neuronal nitric oxide synthase in dorsal root ganglion neurons after systemic capsaicin administration. Neuroscience 67: 1–5. 10.1016/0306-4522(95)00137-8 CASPubMedWeb of Science®Google Scholar Vizzard MA, Erickson K, de Groat WC. 1997. Localization of NADPH diaphorase in the thoracolumbar and sacrococcygeal spinal cord of the dog. J Auton Nerv Syst 64: 128–142. 10.1016/S0165-1838(97)00025-8 CASPubMedWeb of Science®Google Scholar Wetts R, Vaughn JE. 1994. Choline acetyltransferase and NADPH diaphorase are co-expressed in rat spinal cord neurons. Neuroscience 63: 1117–1124. 10.1016/0306-4522(94)90577-0 CASPubMedWeb of Science®Google Scholar Wetts R, Phelps PE, Vaughn JE. 1995. Transient and continuous expression of NADPH diaphorase in different neuronal populations of developing rat spinal cord. Dev Dyn 202: 215–228. 10.1002/aja.1002020302 CASPubMedWeb of Science®Google Scholar Wu W, Liuzzi FJ, Schinco FP, Depto AS, Li Y, Mong JA, Dawson TM, Snyder SH. 1994. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience 61: 719–726. 10.1016/0306-4522(94)90394-8 CASPubMedWeb of Science®Google Scholar Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt DS, Snyder SH, Hökfelt T. 1993. Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol 335: 563–575. 10.1002/cne.903350408 CASPubMedWeb of Science®Google Scholar Citing Literature Volume419, Issue417 April 2000Pages 451-470 ReferencesRelatedInformation
Referência(s)