Synthesis and Properties of Dinuclear Complexes with a Photochromic Bridge: An Intervalence Electron Transfer Switching “On” and “Off”
2000; Wiley; Volume: 2000; Issue: 7 Linguagem: Inglês
10.1002/1099-0682(200007)2000
ISSN1099-0682
AutoresSandrine Fraysse, Christophe Coudret, Jean‐Pierre Launay,
Tópico(s)Radical Photochemical Reactions
ResumoEuropean Journal of Inorganic ChemistryVolume 2000, Issue 7 p. 1581-1590 Full Paper Synthesis and Properties of Dinuclear Complexes with a Photochromic Bridge: An Intervalence Electron Transfer Switching “On” and “Off” Sandrine Fraysse, Sandrine Fraysse Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France, Fax: (internat.) + 33-5/62257999Search for more papers by this authorChristophe Coudret, Christophe Coudret [email protected] Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France, Fax: (internat.) + 33-5/62257999Search for more papers by this authorJean-Pierre Launay, Jean-Pierre Launay Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France, Fax: (internat.) + 33-5/62257999Search for more papers by this author Sandrine Fraysse, Sandrine Fraysse Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France, Fax: (internat.) + 33-5/62257999Search for more papers by this authorChristophe Coudret, Christophe Coudret [email protected] Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France, Fax: (internat.) + 33-5/62257999Search for more papers by this authorJean-Pierre Launay, Jean-Pierre Launay Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France, Fax: (internat.) + 33-5/62257999Search for more papers by this author First published: July 2000 https://doi.org/10.1002/1099-0682(200007)2000:7 3.0.CO;2-2Citations: 195AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Two cyclometallated Ru(bpy)2(pp) units (bpy = 2,2′-bipyridine; pp = 2-phenylpyridine) were grafted via ethynyl spacers onto the photochromic cores of the norbornadiene or dithienylethene families, to give the bimetallic ruthenium(II) complexes 1 and 2a, respectively. Two aspects of these compounds were studied: (i) photoisomerization (norbornadiene to quadricyclane for 1, open form to closed form of the dithienylethene core for 2a), and (ii) intervalence transitions in the mixed-valence ruthenium(II−III) state, with determination of the metal−metal electronic coupling (Vab) by Hush’s equation. Moderate metal−metal electronic coupling (0.068 eV) was found for 1, but 1 cannot be isomerized into the quadricyclane form. On the other hand, 2a can be reversibly photoisomerized to the closed form 2b. An iodine(III) reagent, the triflate salt of bis(pyridyl)phenyliodonium, was used for the oxidation of 2a and 2b. During these oxidations, an intervalence band due to intramolecular electron transfer between ruthenium(II) and ruthenium(III) was detected for 2b, but not for 2a. This switching “on” or “off” of the intervalence transition is rationalized with extended Hückel calculations. Finally, the molecular orbital calculation explains the observed tendency of the closed form 2b to reopen upon oxidation. References [1] Google Scholar [1a] For an overview of molecular electronics see, for instance: Molecular Electronics: Science and Technology (Eds.: A. Aviram, M. Ratner), Annals NY Acad. Sci. 1998, 852, and references therein. − Google Scholar [1b] C. Joachim, J. K. Gimzewski, Chem. Phys. Lett. 1997, 265, 353. − Google Scholar [1c] A. Gourdon, H. Tang, in Molecular Electronics: Science and Technology (Eds.: A. Aviram, M. Ratner), Annals NY Acad. Sci. 1998, 852, p. 219. − Google Scholar [1d] V. J. Langlais, R. R. Schlittler, H. Tang, A. Gourdon, C. Joachim, J. K. Gimzewski, Phys. Rev. Lett. 1999, 83, 2809. Google Scholar [2] Google Scholar [2a] C. Patoux, J.-P. Launay, M. Beley, S. Chodorowski-Kimmes, J.-P. Collin, S. James, J.-P. Sauvage, J. Am. Chem. Soc. 1998, 120, 3717. − Google Scholar [2b] C. Patoux, C. Coudret, J.-P. Launay, C. Joachim, A. Gourdon, Inorg. Chem. 1997, 36, 5037. − Google Scholar [2c] A.-C. Ribou, J.-P. Launay, M. L. Sachtleben, H. Li, C. W. Spangler, Inorg. Chem. 1996, 35, 3735. − Google Scholar [2d] A.-C. Ribou, J.-P. Launay, K. Takahashi, T. Nihira, S. Tarutani, C. W. Spangler, Inorg. Chem. 1994, 33, 1325. − Google Scholar [2e] C. Creutz, Progr. Inorg. Chem. 1983, 30, 1, and references therein. Google Scholar [3]N. S. Hush, Progr. Inorg. Chem. 1967, 8, 391; N. S. Hush, Coord. Chem. Rev. 1985, 64, 135. Google Scholar [4]P. Lainé, V. Marvaud, A. Gourdon, J.-P. Launay, R. Argazzi, C.-A. Bignozzi, Inorg. Chem. 1996, 35, 711. Google Scholar [5]M. Irie, M. Mohri, J. Org. Chem. 1988, 53, 803. M. Hanazawa, R. Sumiya, Y. Horikawa, M. Irie, J. Chem. Soc., Chem. Commun. 1992, 206; M. Irie, O. Miyatake, K. Uchida, J. Am. Chem. Soc. 1992, 114, 8715. Google Scholar [6] Google Scholar [6a] S. L. Gilat, S. H. Kawai, J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1993, 1439. − Google Scholar [6b] S. L. Gilat, S. H. Kawai, J.-M. Lehn, Chem. Eur. J. 1995, 1, 275. − Google Scholar [6c] S. H. Kawai, S. L. Gilat, R. Ponsinet, R.; J.-M. Lehn, Chem. Eur. J. 1995, 1, 285. − Google Scholar [6d] S. H. Kawai, S. L. Gilat, J.-M. Lehn, Eur. J. Org. Chem. 1999, 2359. − Google Scholar [6e] G. M. Tsivgoulis, J.-M. Lehn, Chem. Eur. J. 1996, 2, 1399. Google Scholar [7]M. Beley, S. Chodorowski-Kimmes, J.-P. Collin, P. Lainé, J.-P. Launay, J.-P. Sauvage, Angew. Chem. Int. Ed. Engl. 1994, 33, 1775. Google Scholar [8]J.-P. Sutter, D. M. Grove, M. Beley, J.-P. Collin, N. Veldman, A. L. Spek, J.-P. Sauvage, G. Van Koten, Angew. Chem. Int. Ed. Engl. 1994, 33, 1282. Google Scholar [9]C. Coudret, S. Fraysse, J.-P. Launay, Chem. Commun. 1998, 663. Google Scholar [10]S. Fraysse, C. Coudret, J.-P. Launay, Tetrahedron Lett. 1998, 39, 7873. Google Scholar [11]M. Magoga, C. Joachim, Phys. Rev. B 1997, 56, 4722. Google Scholar [12]Metal-Catalysed Cross-coupling Reactions (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, chapter 5. Google Scholar [13]P. Stang, V. Zhdankin, J. Am. Chem. Soc. 1991, 113, 4571. Google Scholar [14]P. Stang, A. Schwarz, T. Blume, V. Zhdankin, Tetrahedron Lett. 1992, 33, 6759. Google Scholar [15]P. Stang, A. Schwarz, V. Zhdankin, Synthesis 1993, 35. Google Scholar [16]T. Saika, M. Irie, T. Shimidzu, J. Chem. Soc., Chem. Commun. 1994, 2123. Google Scholar [17]S. Kobatake, T. Yamada, K. Uchida, N. Kato, M. Irie, J. Am. Chem. Soc. 1999, 121, 2380. Google Scholar [18]B. P. Warner, S. L. Buchwald, J. Org. Chem. 1994, 59, 5822. Google Scholar [19]J. K. Stille, J. H. Simpson, J. Am. Chem. Soc. 1987, 109, 2138. Google Scholar [20]A related example of a Glaser-like reaction involving an organic halide as oxidizer was reported: M. E. Wright, C. K. Lowe-Ma, Organometallics 1990, 9, 347. Google Scholar [21]R. Durr, S. Cossu, O. De Lucchi, Synth. Commun. 1997, 27, 1369. Google Scholar [22]K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 50, 4467. Google Scholar [23]Due to the chirality of the organometallic group (Λ or Δ configuration), the complexes are obtained as mixtures of stereoisomers such as ΛΛ, ΔΛ and ΔΛ for 2a. However, the chiral centers are generally sufficiently far apart for their steric interaction to be negligible, so that the chirality of the two metal centers can be considered to be independent. Moreover, in similar examples involving Ru(bipy)2-like terminal units, no consequences of the chirality of the metal centers were reported, neither on the NMR spectra (J. Bolger, A. Gourdon, E. Ishow, J.-P. Launay, Inorg. Chem. 1996, 35, 2937), nor on the electrochemical and spectroscopic behavior (M. J. Powers, T. J. Meyer, J. Am. Chem. Soc. 1980, 102, 1289; A. C. Benniston, V. Goulle, A. Harriman, J.-M. Lehn, B. Marczinke, J. Phys. Chem. 1994, 98, 7798). See also the review: R. J. Crutchley, Adv. Inorg. Chem. 1994, 41, 273, and references therein. Thus, the stereochemical aspects are not considered in the rest of this paper. Google Scholar [24]1H NMR (250 MHz, CD3OD, 20 °C) of 12a: δ = 2.02 (s, 3 H), 7.34 (s, 1 H), 7.40−7.46 (m, 3 H), 7.58−7.60 (m, 2 H). Electrochemistry: irreversible oxidation at 1.04 V vs SCE in MeCN. Colorless “open” compound 12a undergoes photocyclization upon irradiation with UV light, to give the “closed” cobalt-blue isomer 12b. For a 1.6·10−5 M solution in MeCN, the photostationary state is reached within 25 s (cf. 30 s for 8). UV/Vis in MeCN: λmax (nm) (ϵ [M−1 cm−1]): open form (12a): 306 (61250); closed form (12b): 604 (21900). Google Scholar [25]In this expression, Vab, ν¯, and Δν¯1/2 are in cm−1, ϵmax in mol−1 L cm−1, and RMM is in Å. The proportionality factor 0.0205 comes from (i) the definition of the oscillator strength f in terms of experimental quantities, (ii) the relation of f with the transition moment μtr (P. W. Atkins, Physical Chemistry, 4th ed., Oxford University Press, Oxford, 1990, pp. 503−504), and (iii) the expression of μtr in the particular case of intervalence transitions, according to Hush.[3] The literal expression of this factor is [3 hCϵ0(ln 10)/4 π2 NA e2]1/2 (π/ln 2)1/4 where h is Planck’s constant, C is the velocity of light, ϵ0 is the permittivity of a vacuum, NA is Avogadro’s number, and e is the elementary charge; a value of 6.513·10−12 is obtained in SI units. Converted into the more common non-SI units, the result is 6.513·10−12 × (1000)1/2·108, i.e., 0.0205. Google Scholar [26]A. T. Bens, D. Frewert, K. Kodatis, C. Kryschi, H.-D. Martin, H. P. Trommsdorff, Eur. J. Org. Chem. 1998, 2333. Google Scholar [27]J. Lacour, S. Torche-Haldimann, J. J. Jodry, C. Ginglinger, F. Favarger, Chem. Commun. 1998, 1733; J. Lacour, S. Barchéchath, J. J. Jodry, C. Ginglinger, Tetrahedron Lett. 1998, 39, 567. Google Scholar [28]M. Irie, K. Sakemura, M. Okinaka, K. Uchida, J. Org. Chem. 1995, 60, 8305. Google Scholar [29]A related example of ring opening upon oxidation was described: C. Pac, Pure Appl. Chem. 1986, 58, 1249. C. Pac, J. Photochem. Photobiol. A 1987, 41, 37. It involves a photoinduced oxidation of a strained carbocycle (cyclobutane) by a sensitizer, resulting in bond cleavage in the former. For another case of ring reopening by photoinduced electron transfer, see: T. Carell, R. Epple, V. Gramlich, Angew. Chem. Int. Ed. Engl. 1996, 35, 620. Google Scholar [30]R. Weiss, J. Seubert, Angew. Chem. Int. Ed. Engl. 1994, 33, 891. Google Scholar [31]Cerius2, Biosym/Molecular Simulations, San Diego, CA, USA. Google Scholar [32]CACAO PC Version 4.0, July 1994. C. Mealli, D. M. Proserpio, J. Chem. Educ. 1990, 67, 399. Google Scholar [33]J.-P. Launay, S. Fraysse, C. Coudret, Mol. Cryst. Liq. Cryst., in press. Google Scholar [34]A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, “SIR92 − a program for automatic solution of crystal structures by direct methods”, J. Appl. Crystallogr. 1994, 27, 435. Google Scholar [35]D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, R. I. Cooper, CRYSTALS Issue 11, Chemical Crystallography Laboratory, University of Oxford, Oxford (UK). Google Scholar [36]ORTEP III: L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. Google Scholar [37]K. H. Pausacker, J. Chem. Soc. 1953, 107. Google Scholar [38]A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024. Google Scholar Citing Literature Volume2000, Issue7July 2000Pages 1581-1590 ReferencesRelatedInformation
Referência(s)