Artigo Acesso aberto Revisado por pares

The Drosophila Gene brainiac Encodes a Glycosyltransferase Putatively Involved in Glycosphingolipid Synthesis

2002; Elsevier BV; Volume: 277; Issue: 36 Linguagem: Inglês

10.1074/jbc.m206213200

ISSN

1083-351X

Autores

Tilo Schwientek, Birgit Keck, Steven B. Levery, Mads A. Jensen, Johannes W. Pedersen, Hans H. Wandall, Mark R. Stroud, Stephen M. Cohen, Margarida Amado, Henrik Clausen,

Tópico(s)

Lysosomal Storage Disorders Research

Resumo

The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function of brainiac is less well understood. brainiac is a member of a large homologous mammalian beta3-glycosyltransferase family with diverse functions. Eleven distinct mammalian homologs have been demonstrated to encode functional enzymes forming beta1-3 glycosidic linkages with different UDP donor sugars and acceptor sugars. The putative mammalian homologs with highest sequence similarity to brainiac encode UDP-N-acetylglucosamine:beta1,3-N-acetylglucosaminyltransferases (beta3GlcNAc-transferases), and in the present study we show that brainiac also encodes a beta3GlcNAc-transferase that uses beta-linked mannose as well as beta-linked galactose as acceptor sugars. The inner disaccharide core structures of glycosphingolipids in mammals (Galbeta1-4Glcbeta1-Cer) and insects (Manbeta1-4Glcbeta1-Cer) are different. Both disaccharide glycolipids served as substrates for brainiac, but glycolipids of insect cells have so far only been found to be based on the GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer core structure. Infection of High Five(TM) cells with baculovirus containing full coding brainiac cDNA markedly increased the ratio of GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer glycolipids compared with Galbeta1-4Manbeta1-4Glcbeta1-Cer found in wild type cells. We suggest that brainiac exerts its biological functions by regulating biosynthesis of glycosphingolipids.

Referência(s)