Asthma, nasal polyposis and ulcerative colitis: a new perspective
2002; Wiley; Volume: 32; Issue: 8 Linguagem: Inglês
10.1046/j.1365-2745.2002.01460.x
ISSN1365-2222
Autores Tópico(s)Asthma and respiratory diseases
ResumoClinical & Experimental AllergyVolume 32, Issue 8 p. 1144-1149 Asthma, nasal polyposis and ulcerative colitis: a new perspective G. Sclano, G. Sclano Doctor in Biological Sciences, Grosseto, ItalySearch for more papers by this author G. Sclano, G. Sclano Doctor in Biological Sciences, Grosseto, ItalySearch for more papers by this author First published: 19 August 2002 https://doi.org/10.1046/j.1365-2745.2002.01460.xCitations: 11 Giuliano Sclano, Via Mozambico 160, 58100 Grosseto, Italy. E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Cookson WO, Moffatt MF. Asthma: an epidemic in the absence of infection? Science 1997; 275: 41– 2. 2 Weille FL. The effect of nasal and sinus surgery upon the manifestations of allergy. N Engl J Med 1950; 242: 43– 8. 3 Weille FL, Gohd RS. The virus theory of nasal polyp etiology and its practical applications. Ann Otol Rhinol Laryngol 1956; 65: 443– 9. 4 Weille FL. Further experiments in the viral theory of nasal polyp etiology. Ann Allergy 1966; 24: 549– 51. 5 Popova GN, Monaenkov AM, Tarasevich NN. Polipoz nosa kak autoimmunnoye zabolevaniye. Vestn Otorinolaringol 1970; 32 (1): 18– 24. 6 Gitnick GL, Rosen VJ, Arthur MH, Hertweck SA. Evidence for the isolation of a new virus from ulcerative colitis patients. Comparison with virus derived from Crohn's disease. Dig Dis Sci 1979; 24: 609– 19. 7 McLaren LC, Gitnick G. Ulcerative colitis and Crohn's disease tissue cytotoxins. Gastroenterology 1982; 82: 1381– 8. 8 Yoshimura HH, Estes MK, Graham DY. Search for the evidence of a viral aetiology for inflammatory bowel disease. Gut 1984; 25: 347– 55. 9 Szczeklik A. Aspirin-induced asthma as a viral disease. Clin Allergy 1988; 18: 15– 20. 10 Babu KS, Salvi SS. Aspirin and asthma. Chest 2000; 118: 1470– 6. 11 Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis and management. J Allergy Clin Immunol 1999; 104: 5– 13. 12 Nakagawa H, Yoshida S, Nakabayashi M et al. Possible relevance of virus infection for development of analgesic idiosyncrasy. Respiration 2001; 68: 422– 4. 13 Hogg JC. Persistent and latent viral infections in the pathology of asthma. Am Rev Respir Dis 1992; 145 (2 Part 2): S7– 9. 14 Hogg JC. Childhood viral infection and the pathogenesis of asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 1999; 160 (5 Part 2): S26– 8. 15 Van Den Broek M, Bachmann MF, Köhler G et al. IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-γ and nitric oxide synthetase 2. J Immunol 2000; 164: 371– 8. 16 Levi-Schaffer F, Garbuzenko E, Rubin A et al. Human eosinophils regulate human lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor β (TGF-β). Proc Natl Acad Sci USA 1999; 96: 9660– 5. 17 Birkland TP, Cheavens MD, Pincus SH. Human eosinophils stimulate DNA synthesis and matrix production in dermal fibroblasts. Arch Dermatol Res 1994; 286: 312– 8. 18 Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 1987; 247: 597– 604. 19 Fine A, Goldstein RH. The effect of transforming growth factor-β on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 1987; 262: 3897– 902. 20 Varga J, Jimenez SA. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-β. Biochem Biophys Res Commun 1986; 138: 974– 80. 21 Abe M, Kurosawa M, Ishikawa O, Miyachi Y. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fibroblast proliferation and type I collagen production. J Allergy Clin Immunol 2000; 106 (1 Part 2): S78– 84. 22 Abe M, Kurosawa M, Ishikawa O, Miyachi Y, Kido H. Mast cell tryptase stimulates both human dermal fibroblast proliferation and type I collagen production. Clin Exp Allergy 1998; 28: 1509– 17. 23 Cairns JA, Walls AF. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest 1997; 99: 1313– 21. 24 Gruber BL, Kew RR, Jelaska A et al. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 1997; 158: 2310– 7. 25 Takeda T, Goto H, Arisawa T, Hase S, Hayakawa T, Asai J. Effect of histamine on human fibroblast in vitro. Arzneimittelforschung 1997; 47: 1152– 5. 26 Nagata Y, Matsumara F, Motoyoshi H, Yamasaki H, Fukuda K, Tanaka S. Secretion of hyaluronic acid from synovial fibroblasts is enhanced by histamine: a newly observed metabolic effect of histamine. J Lab Clin Med 1992; 120: 707– 12. 27 Hatamochi A, Ueki H, Mauch C, Krieg T. Effect of histamine on collagen and collagen m-RNA production in human skin fibroblasts. J Dermatol Sci 1991; 2: 407– 12. 28 Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest 1992; 90: 1479– 85. 29 Minshall EM, Leung DY, Martin RJ et al. Eosinophil-associated TGF-β1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1997; 17: 326– 33. 30 Sasaki Y. Distribution of degranulated and non-degranulated mast cells in nasal polyps. Acta Otolaryngol Suppl 1986; 430: 34– 8. 31 Kawabori S, Denburg JA, Schwartz LB et al. Histochemical and immunohistochemical characteristics of mast cells in nasal polyps. Am J Respir Cell Mol Biol 1992; 6: 37– 43. 32 Yamashita T, Tsuji H, Maeda N, Tomoda K, Kumazawa T. Etiology of nasal polyps associated with aspirin-sensitive asthma. Rhinol Suppl 1989; 8: 15– 24. 33 Finotto S, Dolovich J, Denburg JA, Jordana M, Marshall JS. Functional heterogeneity of mast cells isolated from different microenvironments within nasal polyp tissue. Clin Exp Immunol 1994; 95: 343– 50. 34 Small P, Barrett D, Frenkiel S, Rochon L, Cohen C, Black M. Local specific IgE production in nasal polyps associated with negative skin tests and serum RAST. Ann Allergy 1985; 55: 736– 9. 35 Frenkiel S, Chagnon F, Small P, Rochon L, Cohen C, Black M. The immunological basis of nasal polyp formation. J Otolaryngol 1985; 14: 89– 91. 36 Drake-Lee AB, Barker THW. Free and cell bound IgE in nasal polyps. J Laryngol Otol 1984; 98: 795– 801. 37 Ali M, Mesa-Tejada R, Fayemi AO, Nalebuff DJ, Connell JT. Localization of IgE in tissues by an immunoperoxidase technique. Arch Pathol Lab Med 1979; 103: 274– 5. 38 Pešák V. The localization of IgA and IgE globulins in the palatinal tonsils, nasal mucous membrane and nasal polypi. Folia Microbiol (Praha) 1971; 16: 323– 5. 39 Durham SR, Ying S, Meng Q, Humbert M, Gould H, Kay AB. Local expression of germ-line gene transcripts (Iε) and RNA for the heavy chain of IgE (Cε) in the bronchial mucosa in atopic and non-atopic asthma [abstract]. J Allergy Clin Immunol 1998; 101 (1 Part 2): S162. 40 Ying S, Humbert M, Meng Q et al. Local expression of ε germline gene transcripts and RNA for the ε heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J Allergy Clin Immunol 2001; 107: 686– 92. 41 Humbert M, Menz G, Ying S et al. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol Today 1999; 20: 528– 33. 42 Arató A, Savilahti E, Tainio VM, Klemola T. Immunohistochemical study of lymphoplasmacytic infiltrate and epithelial HLA-DR expression in the rectal and colonic mucosae of children with ulcerative colitis. J Pediatr Gastroenterol Nutr 1989; 8: 172– 80. 43 Rosekrans PC, Meijer CJ, Van Der Wal AM, Lindeman J. Allergic proctitis, a clinical and immunopathological entity. Gut 1980; 21: 1017– 23. 44 O'Donoghue DP, Kumar P. Rectal IgE cells in inflammatory bowel disease. Gut 1979; 20: 149– 53. 45 Heatley RV, Calcraft BJ, Fifield R, Rhodes J, Whitehead RH, Newcombe RG. Immunoglobulin E in rectal mucosa of patients with proctitis. Lancet 1975; 2: 1010– 2. 46 Chott A, Probert CS, Gross GG, Blumberg RS, Balk SP. A common TCR β-chain expressed by CD8+ intestinal mucosa T cells in ulcerative colitis. J Immunol 1996; 156: 3024– 35. 47 Targan SR. The search for the pathogenic antigens in ulcerative colitis [Editorial]. Gastroenterology 1998; 114: 1099– 100. 48 Pleskow WW, Stevenson DD, Mathison DA, Simon RA, Schatz M, Zeiger RS. Aspirin desensitization in aspirin-sensitive asthmatic patients: clinical manifestation and characterization of the refractory period. J Allergy Clin Immunol 1982; 69: 11– 9. 49 Mita H, Endoh S, Kudoh M et al. Possible involvement of mast-cell activation in aspirin provocation of aspirin-induced asthma. Allergy 2001; 56: 1061– 7. 50 O'Sullivan S, Dahlén B, Roquet A, Larsson L, Dahlén SE, Kumlin M. Urinary 9α, 11β-PGF2 as a marker of mast cell activation in allergic and aspirin-intolerant asthma. Adv Exp Med Biol 1997; 433: 159– 62. 51 O'Sullivan S, Dahlén B, Dahlén SE, Kumlin M. Increased urinary excretion of the prostaglandin D2 metabolite 9α,11β-prostaglandin F2 after aspirin challenge supports mast cell activation in aspirin-induced airway obstruction. J Allergy Clin Immunol 1996; 98: 421– 32. 52 Fischer AR, Rosenberg MA, Lilly CM et al. Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 1994; 94: 1046– 56. 53 Sladek K, Szczeklik A. Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. Eur Respir J 1993; 6: 391– 9. 54 Bosso JV, Schwartz LB, Stevenson DD. Tryptase and histamine release during aspirin-induced respiratory reactions. J Allergy Clin Immunol 1991; 88: 830– 7. 55 Kowalski M, Wojciechowska B, Sliwinska-Kowalska M et al. Biochemical analysis of nasal secretions induced by aspirin (ASA) challenges in patients with ASA sensitivity, nasal polyps and chronic rhinosinusitis [Abstract]. J Allergy Clin Immunol 1991; 87 (1 Part 2): 216. 56 Ferreri NR, Howland WC, Stevenson DD, Spiegelberg HL. Release of leukotrienes, prostaglandins, and histamine into nasal secretion of aspirin-sensitive asthmatics during reaction to aspirin. Am Rev Respir Dis 1988; 137: 847– 54. 57 Kinsella M, Salari H, Chan H, Tse KS, Chan-Yeung M. Plasma histamine after methacholine, allergen, and aspirin challenges. J Asthma 1987; 24: 327– 34. 58 Ortolani C, Capsoni F, Restuccia M et al. Neutrophil chemotactic factor of anaphylaxis (NCF-A) release in aspirin-induced asthma. Clin Allergy 1984; 14: 443– 52. 59 Hollingsworth HM, Downing ET, Braman SS, Glassroth J, Binder R, Center DM. Identification and characterization of neutrophil chemotactic activity in aspirin-induced asthma. Am Rev Respir Dis 1984; 130: 373– 9. 60 Szmidt M, Grzelewska-Rzymowska I, Ro˙zniecki, Kowalski ML, Rychlicka I. Histaminemia after aspirin challenge in aspirin-sensitive asthmatics. Agents Actions 1981; 11: 105– 7. 61 Stevenson DD, Arroyave CM, Bhat KN, Tan EM. Oral aspirin challenges in asthmatic patients: a study of plasma histamine. Clin Allergy 1976; 6: 493– 505. 62 McAnulty RJ, Chambers RC, Laurent GJ. Regulation of fibroblast procollagen production. Transforming growth factor-β1 induces prostaglandin E2 but not procollagen synthesis via a pertussis toxin-sensitive G-protein. Biochem J 1995; 307 : 63– 8. 63 Diaz A, Varga J, Jimenez SA. Transforming growth factor-β stimulation of lung fibroblasts prostaglandin E2 production. J Biol Chem 1989; 264: 11554– 7. 64 Goldstein RH, Wall M. Activation of protein formation and cell division by bradykinin and des-Arg9-bradykinin. J Biol Chem 1984; 259: 9263– 8. 65 Goldstein RH, Polgar P. The effect and interaction of bradykinin and prostaglandins on protein and collagen production by lung fibroblasts. J Biol Chem 1982; 257: 8630– 3. 66 Mauviel A, Kähäri VM, Heino J et al. Gene expression of fibroblast matrix proteins is altered by indomethacin. FEBS Lett 1988; 231: 125– 9. 67 Martelli NA. Bronchial and intravenous provocation tests with indomethacin in aspirin-sensitive asthmatics. Am Rev Respir Dis 1979; 120: 1073– 9. 68 Martelli NA, Usandivaras G. Inhibition of aspirin-induced bronchoconstriction by sodium cromoglycate inhalation. Thorax 1977; 32: 684– 90. 69 Picado C, Fernandez-Morata JC, Juan M et al. Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med 1999; 160: 291– 6. 70 Kowalski ML, Pawliczak R, Wozniak J et al. Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. Am J Respir Crit Care Med 2000; 161: 391– 8. 71 Schäfer D, Schmid M, Göde UC, Baenkler H-W. Dynamics of eicosanoids in peripheral blood cells during bronchial provocation in aspirin-intolerant asthmatics. Eur Respir J 1999; 13: 638– 46. 72 Cowburn AS, Sladek K, Soja J et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1998; 101: 834– 46. 73 Sampson AP, Cowburn AS, Sladek K et al. Profound overexpression of leukotriene C4 synthase in bronchial biopsies from aspirin-intolerant asthmatic patients. Int Arch Allergy Immunol 1997; 113: 355– 7. 74 Oosaki R, Mizushima Y, Mita H, Shida T, Akiyama K, Kobayashi M. Urinary leukotriene E4 and 11-dehydrothromboxane B2 in patients with aspirin-sensitive asthma. Allergy 1997; 52: 470– 3. 75 Kumlin M, Stensvad F, Larsson L, Dahlén B, Dahlén SE. Validation and application of a new simple strategy for measurements of urinary leukotriene E4 in humans. Clin Exp Allergy 1995; 25: 467– 79. 76 Christie PE, Tagari P, Ford-Hutchinson AW et al. Urinary leukotriene E4 after lysine-aspirin inhalation in asthmatic subjects. Am Rev Respir Dis 1992; 146: 1531– 4. 77 Kumlin M, Dahlén B, Björck T, Zetterström O, Granström E, Dahlén SE. Urinary excretion of leukotriene E4 and 11-dehydro-thromboxane B2 in response to bronchial provocation with allergen, aspirin, leukotriene D4, and histamine in asthmatics. Am Rev Respir Dis 1992; 146: 96– 103. 78 Smith CM, Hawksworth RJ, Thien FC, Christie PE, Lee TH. Urinary leukotriene E4 in bronchial asthma. Eur Respir J 1992; 5: 693– 9. 79 Christie PE, Tagari P, Ford-Hutchinson AW et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 1991; 143: 1025– 9. 80 Phan SH, McGarry BM, Loeffler KM, Kunkel SL. Binding of leukotriene C4 to rat lung fibroblasts and stimulation of collagen synthesis in vitro. Biochemistry 1988; 27: 2846– 53. 81 Kharitonov SA, Sapienza MM, Chung KF, Barnes PJ. Prostaglandins mediate bradykinin-induced reduction of exhaled nitric oxide in asthma. Eur Respir J 1999; 14: 1023– 7.DOI: 10.1183/09031936.99.14510239 82 Kharitonov SA, Sapienza MA, Barnes PJ, Chung KF. Prostaglandins E2 and F2α reduce exhaled nitric oxide in normal and asthmatic subjects irrespective of airway caliber changes. Am J Respir Crit Care Med 1998; 158: 1374– 8. 83 Tetsuka T, Daphna-Iken D, Srivastava SK, Baier LD, DuMaine J, Morrison AR. Cross-talk between cyclooxygenase and nitric oxide pathways: prostaglandin E2 negatively modulates induction of nitric oxide synthase by interleukin 1. Proc Natl Acad Sci USA 1994; 91: 12168– 72. 84 Bolz SS, Pohl U. Indomethacin enhances endothelial NO release — evidence for a role of PGI2 in the autocrine control of calcium-dependent autacoid production. Cardiovasc Res 1997; 36: 437– 44. 85 Chu AJ, Prasad JK. Up-regulation by human recombinant transforming growth factor β-1 of collagen production in cultured dermal fibroblasts is mediated by the inhibition of nitric oxide signaling. J Am Coll Surg 1999; 188: 271– 80. 86 Ramis I, Roselló-Catafau J, Bulbena O, Picado C, Gelpí E. Recovery of nasal prostaglandin production after inhibition by aspirin. Prostaglandins Leukot Essent Fatty Acids 1990; 40: 291– 3. 87 Yoshida S, Sakamoto H, Ishizaki Y et al. Efficacy of leukotriene receptor antagonist in bronchial hyperresponsiveness and hypersensitivity to analgesic in aspirin-intolerant asthma. Clin Exp Allergy 2000; 30: 64– 70. 88 Szczeklik A, Dworski R, Mastalerz L et al. Salmeterol prevents aspirin-induced attacks of asthma and interferes with eicosanoid metabolism. Am J Respir Crit Care Med 1998; 158: 1168– 72. 89 Dahlén B, Nizankowska E, Szczeklik A et al. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 1998; 157: 1187– 94. 90 Yoshida S, Amayasu H, Sakamoto H et al. Cromolyn sodium prevents bronchoconstriction and urinary LTE4 excretion in aspirin-induced asthma. Ann Allergy Asthma Immunol 1998; 80: 171– 6. 91 Robuschi M, Gambaro G, Sestini P et al. Attenuation of aspirin-induced bronchoconstriction by sodium cromoglycate and nedocromil sodium. Am J Respir Crit Care Med 1997; 155: 1461– 4. 92 Szmidt M, Wasiak W. The influence of misoprostol (synthetic analogue of prostaglandin E1) on aspirin-induced bronchoconstriction in aspirin-sensitive asthma. J Invest Allergol Clin Immunol 1996; 6: 121– 5. 93 Sestini P, Armetti L, Gambaro G et al. Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 1996; 153: 572– 5. 94 Szczeklik A, Mastalerz L, Nizankowska E, Cmiel A. Protective and bronchodilator effects of prostaglandin E and salbutamol in aspirin-induced asthma. Am J Respir Crit Care Med 1996; 153: 567– 71. 95 Mastalerz L, Nizankowska E, Sladek K, Szczeklik A. Protective effects of prostaglandin E2 (PGE2) on airway obstruction induced by aspirin (ASA) in aspirin-intolerant asthmatics (AIA) [Abstract]. Eur Respir J 1994; 7 (Suppl. 18): 434S. 96 Nasser SM, Bell GS, Foster S et al. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma. Thorax 1994; 49: 749– 56. 97 Yamamoto H, Nagata M, Kuramitsu K et al. Inhibition of analgesic-induced asthma by leukotriene receptor antagonist ONO-1078. Am J Respir Crit Care Med 1994; 150: 254– 7. 98 Israel E, Fischer AR, Rosenberg MA et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993; 148: 1447– 51. 99 Dahlén B, Kumlin M, Margolskee DJ et al. The leukotriene receptor antagonist MK-0679 blocks airway obstruction induced by inhaled lysine-aspirin in aspirin-sensitive asthmatics. Eur Respir J 1993; 6: 1018– 26. 100 Christie PE, Smith CM, Lee TH. The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104353, inhibits aspirin-induced asthma. Am Rev Respir Dis 1991; 144: 957– 8. 101 Stevenson DD, Simon RA, Mathison DA. Cromolyn pretreatment delays onset of aspirin (ASA) induced asthmatic reactions [Abstract]. J Allergy Clin Immunol 1984; 73 (1 Part 2): 162. 102 Delaney JC. The effect of ketotifen on aspirin-induced asthmatic reactions. Clin Allergy 1983; 13: 247– 51. 103 Sclano G. Refractory period to aspirin after aspirin-induced asthma [Letter]. J Allergy Clin Immunol 1982; 70: 220– 1. 104 Szczeklik A, Czerniawska-Mysik G, Serwonska M, Kuklinski P. Inhibition by ketotifen of idiosyncratic reactions to aspirin. Allergy 1980; 35: 421– 4. 105 Szczeklik A, Czerniawska-Mysik G, Serwonska M, Kuklinski P. Inhibition of idiosyncratic reactions to aspirin by ketotifen. Respiration 1980; 39 (Suppl. 1): 24– 5. 106 Szczeklik A, Serwonska M. Inhibition of idiosyncratic reactions to aspirin in asthmatic patients by clemastine. Thorax 1979; 34: 654– 7. 107 Wüthrich B. Protective effect of ketotifen and disodium cromoglycate against bronchoconstriction induced by aspirin, benzoic acid or tartrazine in intolerant asthmatics. Respiration 1979; 37: 224– 31. 108 Wuethrich B, Radielovic P, Debelic M. The protective effect of a new oral anti-asthma agent (ketotifen, HC 20–511) against experimentally induced bronchospasm (5 different models). Int J Clin Pharmacol Biopharm 1978; 16: 424– 9. 109 Pasargiklian M, Bianco S, Allegra L et al. Aspects of bronchial reactivity to prostaglandins and aspirin in asthmatic patients. Respiration 1977; 34: 78– 91. 110 Basomba A, Romar A, Peláez A, Villalmanzo IG, Campos A. The effect of sodium cromoglycate in preventing aspirin induced bronchospasm. Clin Allergy 1976; 6: 269– 75. 111 Saltzman LE, Moss J, Berg RA, Hom B, Crystal RG. Modulation of collagen production by fibroblasts. Effects of chronic exposure to agonists that increase intracellular cyclic AMP. Biochem J 1982; 204: 25– 30. 112 Berg RA, Moss J, Baum BJ, Crystal RG. Regulation of collagen production by the β-adrenergic system. J Clin Invest 1981; 67: 1457– 62. 113 Baum BJ, Moss J, Breul SD, Crystal RG. Association in normal human fibroblasts of elevated levels of adenosine 3′: 5′-monophosphate with a selective decrease in collagen production. J Biol Chem 1978; 253: 3391– 4. 114 Fine A, Poliks CF, Donahue LP, Smith BD, Goldstein RH. The differential effect of prostaglandin E2 on transforming growth factor-β and insulin-induced collagen formation in lung fibroblasts. J Biol Chem 1989; 264: 16988– 91. 115 Varga J, Diaz-Perez A, Rosenbloom J, Jimenez SA. PGE2 causes a coordinate decrease in the steady state levels of fibronectin and types I and III procollagen mRNAs in normal human dermal fibroblasts. Biochem Biophys Res Commun 1987; 147: 1282– 8. 116 Tuziak T, Kram A, Woyke S. Edematous nasal polyp with atypical stromal cells misdiagnosed cytologically as rhabdomyosarcoma. A case report. Acta Cytol 1995; 39: 521– 4. 117 Nakayama M, Wenig BM, Heffner DK. Atypical stromal cells in inflammatory nasal polyps: immunohistochemical and ultrastructural analysis in defining histogenesis. Laryngoscope 1995; 105: 127– 34. 118 Batsakis JG. Stromal cell atypia in sinonasal polyposis. Ann Otol Rhinol Laryngol 1986; 95: 321– 2. 119 Kindblom LG, Angervall L. Nasal polyps with atypical stroma cells: a pseudosarcomatous lesion. A light and electron-microscopic and immunohistochemical investigation with implications on the type and nature of the mesenchymal cells. Acta Pathol Microbiol Immunol Scand [A] 1984; 92: 65– 72. 120 Klenoff BH, Goodman ML. Mesenchymal cell atypicality in inflammatory polyps. J Laryngol Otol 1977; 91: 751– 6. 121 Compagno J, Hyams VJ, Lepore ML. Nasal polyposis with stromal atypia. Review and follow-up study of 14 cases. Arch Pathol Lab Med 1976; 100: 224– 6. 122 Smith CJ, Echevarria R, McLelland CA. Pseudosarcomatous changes in antrochoanal polyps. Arch Otolaryngol 1974; 99: 228– 30. 123 Berry GJ, Pitts WC, Weiss LM. Pseudomalignant ulcerative change of the gastrointestinal tract. Hum Pathol 1991; 22: 59– 62. 124 Jessurun J, Paplanus SH, Nagle RB, Hamilton SR, Yardley JH, Tripp M. Pseudosarcomatous changes in inflammatory pseudopolyps of the colon. Arch Pathol Lab Med 1986; 110: 833– 6. 125 Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1: 71– 81. 126 Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 1998; 160: 419– 25. 127 Paul S, Heinz-Erian P, Said SI. Autoantibody to vasoactive intestinal peptide in human circulation. Biochem Biophys Res Commun 1985; 130: 479– 85. 128 Paul S, Gao QS, Huang H et al. Catalytic autoantibodies to vasoactive intestinal peptide. Chest 1995; 107 (3, Suppl.): 125S– 126S. 129 Paul S, Said SI, Thompson AB et al. Characterization of autoantibodies to vasoactive intestinal peptide in asthma. J Neuroimmunol 1989; 23: 133– 42. 130 Veljkovic V, Metlaš R, Danilo V et al. Natural autoantibodies cross-react with a peptide derived from the second conserved region of HIV-1 envelope glycoprotein gp120. Biochem Biophys Res Commun 1993; 196: 1019– 24.DOI: 10.1006/bbrc.1993.2353 131 Veljkovic V, Metlas R, Raspopovic J, Pongor S. Spectral and sequence similarity between vasoactive intestinal peptide and the second conserved region of human immunodeficiency virus type 1 envelope glycoprotein (gp120): possible consequences on prevention and therapy of AIDS. Biochem Biophys Res Commun 1992; 189: 705– 10. 132 Charous BL, Halpern EF, Steven GC. Hydroxychloroquine improves airflow and lowers circulating IgE levels in subjects with moderate symptomatic asthma. J Allergy Clin Immunol 1998; 102: 198– 203. 133 Charous BL. Open study of hydroxychloroquine in the treatment of severe symptomatic or corticosteroid-dependent asthma. Ann Allergy 1990; 65: 53– 8. 134 Goenka MK, Kochhar R, Tandia B, Mehta SK. Chloroquine for mild to moderately active ulcerative colitis: comparison with sulfasalazine. Am J Gastroenterol 1996; 91: 917– 21. 135 Sharief N, Crawford OF, Dinwiddie R. Fibrosing alveolitis and desquamative interstitial pneumonitis. Pediatr Pulmonol 1994; 17: 359– 65. 136 Avital A, Godfrey S, Maayan C, Diamant Y, Springer C. Chloroquine treatment of interstitial lung disease in children. Pediatr Pulmonol 1994; 18: 356– 60. 137 Tsai WP, Nara PL, Kung HF, Oroszlan S. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 1990; 6: 481– 9. 138 Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K. Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther 1996; 18: 1080– 92. 139 Relman DA. The search for unrecognized pathogens. Science 1999; 284: 1308– 10.DOI: 10.1126/science.284.5418.1308 140 Cassell GH. Infectious causes of chronic inflammatory diseases and cancer. Emerg Infect Dis 1998; 4: 475– 87. 141 Lorber B. Are all diseases infectious? Ann Intern Med 1996; 125: 844– 51. 142 De La Torre JC, Borrow P, Oldstone MB. Viral persistence and disease: cytopathology in the absence of cytolysis. Br Med Bull 1991; 47: 838– 51. 143 Tighe H, Takabayashi K, Schwartz D et al. Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol 2000; 106: 124– 34. Citing Literature Volume32, Issue8August 2002Pages 1144-1149 ReferencesRelatedInformation
Referência(s)