Some Algorithms for Minimizing a Function of Several Variables

1964; Society for Industrial and Applied Mathematics; Volume: 12; Issue: 1 Linguagem: Inglês

10.1137/0112007

ISSN

2168-3484

Autores

Babubhai V. Shah, Robert J. Buehler, Oscar Kempthorne,

Tópico(s)

Advanced Numerical Analysis Techniques

Resumo

Previous article Next article Some Algorithms for Minimizing a Function of Several VariablesB. V. Shah, R. J. Buehler, and O. KempthorneB. V. Shah, R. J. Buehler, and O. Kempthornehttps://doi.org/10.1137/0112007PDFPDF PLUSBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Hirotugu Akaike, On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method, Ann. Inst. Statist. Math. Tokyo, 11 (1959), 1–16 10.1007/BF01831719 MR0107973 0100.14002 CrossrefISIGoogle Scholar[2] E. M. L. Beale, On an iterative method for finding a local minimum of a function of more than one variable, Technical Report, 25, Statistical Techniques Research Group, Princeton University, Princeton, 1958 Google Scholar[3] E. Bodewig, Matrix calculus, 2nd revised and enlarged edition, North-Holland Publishing Co., Amsterdam, 1959xi+452 MR0127517 0086.32501 Google Scholar[4] G. E. P. Box and , J. S. Hunter, V. Chew, Experimental designs for the exploration and exploitation of response surfacesExperimental Designs in Industry, John Wiley, New York, 1958 Google Scholar[5] G. E. P. Box and , K. B. Wilson, On the experimental attainment of optimum conditions, J. Roy. Statist. Soc. Ser. B., 13 (1951), 1–38; discussion: 38–45 MR0046009 0043.34402 Google Scholar[6] R. J. Buehler, , B. V. Shah and , O. Kempthorne, Some further properties of the methods of parallel tangents and conjugate gradients, Technical Report, 3, Statistical Laboratory, Iowa State University, Ames, 1961, Contract Nonr-530(05) Google Scholar[7] A. Cauchy, Méthode générale pour la résolution des systèmes d'équations simultanées, C. R. Acad. Sci. Paris, 25 (1847), 536–538 Google Scholar[8] William G. Cochran and , Gertrude M. Cox, Experimental designs, John Wiley & Sons Inc., New York, 1957xiv+617, 2nd ed. MR0085682 0077.13205 Google Scholar[9] Jean Bronfenbrenner Crockett and , Herman Chernoff, Gradient methods of maximization, Pacific J. Math., 5 (1955), 33–50 MR0075676 0066.10103 CrossrefGoogle Scholar[10] Haskell B. Curry, The method of steepest descent for non-linear minimization problems, Quart. Appl. Math., 2 (1944), 258–261 MR0010667 0061.26801 CrossrefGoogle Scholar[11] O. L. Davies, The Design and Analysis of Industrial Experiments, Hafner, New York, 1956 Google Scholar[12] Aryeh Dvoretzky, J. Neyman, On stochastic approximation, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I, University of California Press, Berkeley and Los Angeles, 1956, 39–55 MR0084911 0072.34701 Google Scholar[13] R. W. Finkel, The method of resultant descents for the minimization of an arbitrary function, Tech. Report, Space Technology Lab., Los Angeles, 1959 Google Scholar[14] A. I. Forsythe and , G. E. Forsythe, O. Taussky, Punched-card experiments with accelerated gradient methods for linear equationsContributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, 55–69 MR0066763 0058.11001 Google Scholar[15] George E. Forsythe, Solving linear algebraic equations can be interesting, Bull. Amer. Math. Soc., 59 (1953), 299–329 MR0056372 CrossrefISIGoogle Scholar[16] George E. Forsythe, L. J. Paige and , O. Taussky, Tentative classification of methods and bibliography on solving systems of linear equationsSimultaneous linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series, No. 29, U. S. Government Printing Office, Washington, D. C., 1953, 1–28 MR0057021 0052.12903 Google Scholar[17] G. E. Forsythe and , T. S. Motzkin, Acceleration of the optimum gradient method, Bull. Amer. Math. Soc., 57 (1951), 304–305, Preliminary report, (Abstract) ISIGoogle Scholar[18] M. Friedman and , L. J. Savage, Selected Techniques of Statistical Analysis for Scientific and Industrial Research and Production and Management Engineering, by the Statistical Research Group, Columbia University, McGraw-Hill Book Co., Inc., New York and London, 1947xiv+473, Eisenhart, C. and Hastay, M. W. and Wallis, W. A., eds. MR0023505 Google Scholar[19] Magnus R. Hestenes, The conjugate-gradient method for solving linear systems, Proceedings of Symposia in Applied Mathematics. Vol. VI. Numerical analysis, McGraw-Hill Book Company, Inc., New York, for the American Mathematical Society, Providence, R. I., 1956, 83–102 MR0084178 0072.14102 Google Scholar[20] Magnus R. Hestenes and , Eduard Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409–436 (1953) MR0060307 0048.09901 CrossrefISIGoogle Scholar[21] Harold Hotelling, Experimental determination of the maximum of a function, Ann. Math. Statistics, 12 (1941), 20–45 MR0003521 0024.43104 CrossrefGoogle Scholar[22] Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953x+274 MR0059056 0051.34602 Google Scholar[23] J. Kiefer, Sequential minimax search for a maximum, Proc. Amer. Math. Soc., 4 (1953), 502–506 MR0055639 0050.35702 CrossrefISIGoogle Scholar[24] J. Kiefer and , J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statistics, 23 (1952), 462–466 MR0050243 0049.36601 CrossrefISIGoogle Scholar[25] M. J. D. Powell, An iterative method for finding stationary values of a function of several variables, Comput. J., 5 (1962), 147–151 0104.34303 CrossrefGoogle Scholar[26] Herbert Robbins and , Sutton Monro, A stochastic approximation method, Ann. Math. Statistics, 22 (1951), 400–407 MR0042668 0054.05901 CrossrefISIGoogle Scholar[27] Jerome Sacks, Asymptotic distribution of stochastic approximation procedures, Ann. Math. Statist., 29 (1958), 373–405 MR0098427 0229.62010 CrossrefISIGoogle Scholar[28] R. V. Southwell, Stress-calculation in frameworks by the method of "systematic relaxation of constraints", Parts I and II, Proc. Roy. Soc. London Ser. A, 151 (1935), 56–95 CrossrefGoogle Scholar[29] H. A. Spang, III, A review of minimization techniques for nonlinear functions, SIAM Rev., 4 (1962), 343–365 10.1137/1004089 MR0145642 0112.12205 LinkISIGoogle Scholar[30] G. Temple, The general theory of relaxation methods applied to linear systems, Proc. Roy. Soc. London Ser. A, 169 (1939), 467–500 0020.24706 CrossrefGoogle Scholar[31] D. J. Wilde, T. B. Drew, , J. W. Hoopes, Jr. and , T. Vermeulen, Optimization methodsAdvances in Chemical Engineering, Vol. III, Academic Press, New York, 1962 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Some History of the Conjugate Gradient and Lanczos Algorithms: 1948–1976SIAM Review, Vol. 31, No. 1 | 2 August 2006AbstractPDF (6558 KB)On the Convergence of the Conjugate Gradient Method for Singular Linear Operator EquationsSIAM Journal on Numerical Analysis, Vol. 9, No. 1 | 1 August 2006AbstractPDF (1764 KB)The Conjugate Residual Method for Constrained Minimization ProblemsSIAM Journal on Numerical Analysis, Vol. 7, No. 3 | 14 July 2006AbstractPDF (845 KB)A Survey of Numerical Methods for Unconstrained OptimizationSIAM Review, Vol. 12, No. 1 | 18 July 2006AbstractPDF (2399 KB)On the Convergence of Some Feasible Direction Algorithms for Nonlinear ProgrammingSIAM Journal on Control, Vol. 5, No. 2 | 18 July 2006AbstractPDF (1369 KB) Volume 12, Issue 1| 1964Journal of the Society for Industrial and Applied Mathematics1-248 History Submitted:26 February 1962Accepted:31 May 1963Published online:13 July 2006 InformationCopyright © 1964 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0112007Article page range:pp. 74-92ISSN (print):0368-4245ISSN (online):2168-3484Publisher:Society for Industrial and Applied Mathematics

Referência(s)