Artigo Revisado por pares

On the Smoothness of Distributions of Functionals of Random Processes

1989; Society for Industrial and Applied Mathematics; Volume: 33; Issue: 3 Linguagem: Inglês

10.1137/1133075

ISSN

1095-7219

Autores

Алексей Владимирович Угланов,

Tópico(s)

Analysis of environmental and stochastic processes

Resumo

Previous article Next article On the Smoothness of Distributions of Functionals of Random ProcessesA. V. UglanovA. V. Uglanovhttps://doi.org/10.1137/1133075PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Yu. A. Davydov, On the absolute continuity of the distributions of functionals of random processes, Theory Probab. Appl., 22 (1978), 228–229 Google Scholar[2] M. A. Lifshits, On the absolute continuity of the distributions of functionals of random processes, Theory Probab. Appl., 27 (1982), 600–606 10.1137/1127066 0517.60040 LinkGoogle Scholar[3] N. V. Smorodina, Absolute continuity of distributions of functionals of diffusion processes, Uspekhi Mat. Nauk, 37 (1982), 185–192, (In Russian.) 84d:60115 Google Scholar[4] A. V. Uglanov, Division of generalized functions of an infinite number of variables by polynomials, Dokl. Akad. Nauk SSSR, 264 (1982), 1096–1099, (In Russian.) 84j:46077 Google Scholar[5] E. I. Efimova and , A. V. Uglanov, Formulas of vector analysis in a Banach space, Dokl. Akad. Nauk SSSR, 271 (1983), 1302–1306, (In Russian.) 86c:58006 Google Scholar[6] Yu. L. Daletskii and , S. V. Fomin, Measures and differential equations in infinite-dimensional spaces, Nauka, Moscow, 1983, (In Russian.) Google Scholar[7] A. V. Uglanov, Surface integrals in a Banach space, Mat. Sb. (N.S.), 110(152) (1979), 189–217, 319, (In Russian.) 82k:58025 Google Scholar[8] A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag, Berlin-New York, 1975 Google Scholar[9] R. E. Edwards, Functional Analysis, Mir., Moscow, 1969, (In Russian.) 0189.12103 Google Scholar[10] Yu. L. Daletskii and , N. K. Sheraliev, First-order equations for measures and chains in an infinite-dimensional space, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, (1980), 20–24, 90, (In Russian.) 81k:35157 Google Scholar[11] A. V. Uglanov, A result on measures on a linear space, Mat. Sb., 100 (1976), 242–247, (In Russian.) Google Scholar[12] Jacques Neveu, Mathematical foundations of the calculus of probability, Translated by Amiel Feinstein, Holden-Day Inc., San Francisco, Calif., 1965xiii+223 33:6660 0137.11301 Google Scholar[13] H.-S. Ho, Gaussian Measures in Banach Spaces, Mir, Moscow, 1979, (In Russian.) Google Scholar[14] V. I. Averbukh, , O. G. Smolyanov and , S. V. Fomin, Generalized functions and differential equations in linear spaces. I. Differentiable measures, Trudy Moskov. Mat. Obšč., 24 (1971), 133–174, (In Russian.) 51:6413 0234.28005 Google Scholar[15] I. I. Gikhman and , A. V. Skorokhod, The theory of stochastic processes. III, Springer-Verlag, Berlin, 1979iii+387 58:31323b 0404.60061 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Differentiable measures and the Malliavin calculusJournal of Mathematical Sciences, Vol. 87, No. 4 | 1 Dec 1997 Cross Ref Gaussian measures on linear spacesJournal of Mathematical Sciences, Vol. 79, No. 2 | 1 Apr 1996 Cross Ref Volume 33, Issue 3| 1989Theory of Probability & Its Applications History Submitted:31 January 1985Published online:17 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1133075Article page range:pp. 500-508ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics

Referência(s)