Water Regulation and Its Evolution in the Fishes
1932; University of Chicago Press; Volume: 7; Issue: 1 Linguagem: Inglês
10.1086/394393
ISSN1539-7718
Autores Tópico(s)Marine and fisheries research
ResumoPrevious articleNext article No AccessWater Regulation and Its Evolution in the FishesHomer W. SmithHomer W. SmithPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The Quarterly Review of Biology Volume 7, Number 1Mar., 1932 Published in association with Stony Brook University Article DOIhttps://doi.org/10.1086/394393 Views: 10Total views on this site Citations: 148Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Jonathan P Velotta, Stephen D McCormick, Andrew Whitehead, Catherine S Durso, Eric T Schultz Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity, Integrative and Comparative Biology 9 (Jun 2022).https://doi.org/10.1093/icb/icac072N. L. Rendakov Ionocyte Functions and Hormonal Regulation of Ion Exchange in Fish, Biology Bulletin Reviews 11, no.66 (Dec 2021): 616–631.https://doi.org/10.1134/S2079086421060074Harvey B Lillywhite, David H Evans Osmoregulation by Vertebrates in Aquatic Environments, (Jul 2021): 1–14.https://doi.org/10.1002/9780470015902.a0029291Maria C. Cartolano, Elizabeth A. Babcock, M. Danielle McDonald Evidence that Gulf toadfish use pulsatile urea excretion to communicate social status, Physiology & Behavior 227 (Dec 2020): 113182.https://doi.org/10.1016/j.physbeh.2020.113182Rebecca Rash, Harvey B. Lillywhite Drinking behaviors and water balance in marine vertebrates, Marine Biology 166, no.1010 (Sep 2019).https://doi.org/10.1007/s00227-019-3567-4Marina Giacomin, Giorgi Dal Pont, Junho Eom, Patricia M. Schulte, Chris M. Wood The effects of salinity and hypoxia exposure on oxygen consumption, ventilation, diffusive water exchange and ionoregulation in the Pacific hagfish (Eptatretus stoutii), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 232 (Jun 2019): 47–59.https://doi.org/10.1016/j.cbpa.2019.03.007Maria C. Cartolano, Phallon Tullis-Joyce, Kathleen Kubicki, and M. Danielle McDonald Do Gulf Toadfish Use Pulsatile Urea Excretion to Chemically Communicate Reproductive Status?, Physiological and Biochemical Zoology 92, no.22 (Jan 2019): 125–139.https://doi.org/10.1086/701497José Christian Díaz del Basto, José Iván Mojica, Hans Werner Koyro Morfología externa del pez parásito Paravandellia phaneronema (Miles 1943) (Siluriformes: Trichomycteridae) observada mediante imágenes de microscopía electrónico de barrido, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 42, no.165165 (Dec 2018): 323.https://doi.org/10.18257/raccefyn.646Erika Sundell, Daniel Morgenroth, Jeroen Brijs, Andreas Ekström, Albin Gräns, Erik Sandblom, Steven Cooke Seawater acclimation affects cardiac output and adrenergic control of blood pressure in rainbow trout ( Oncorhynchus mykiss )—implications for salinity variations now and in the future, Conservation Physiology 6, no.11 (Nov 2018).https://doi.org/10.1093/conphys/coy061Alexander M. Clifford, Nicolas R. Bury, Aaron G. Schultz, James D. Ede, Brendan L. Goss, Greg G. Goss Regulation of plasma glucose and sulfate excretion in Pacific hagfish, Eptatretus stoutii is not mediated by 11-deoxycortisol, General and Comparative Endocrinology 247 (Jun 2017): 107–115.https://doi.org/10.1016/j.ygcen.2017.01.022Thomas M. Cullen, David C. Evans Palaeoenvironmental drivers of vertebrate community composition in the Belly River Group (Campanian) of Alberta, Canada, with implications for dinosaur biogeography, BMC Ecology 16, no.11 (Nov 2016).https://doi.org/10.1186/s12898-016-0106-8Thomas M. Cullen, Federico Fanti, Christopher Capobianco, Michael J. Ryan, David C. Evans A vertebrate microsite from a marine-terrestrial transition in the Foremost Formation (Campanian) of Alberta, Canada, and the use of faunal assemblage data as a paleoenvironmental indicator, Palaeogeography, Palaeoclimatology, Palaeoecology 444 (Feb 2016): 101–114.https://doi.org/10.1016/j.palaeo.2015.12.015Yuqin Shu, Qiyong Lou, Ziru Dai, Xiangyan Dai, Jiangyan He, Wei Hu, Zhan Yin The basal function of teleost prolactin as a key regulator on ion uptake identified with zebrafish knockout models, Scientific Reports 6 (Jan 2016): 18597.https://doi.org/10.1038/srep18597Alexander Clifford, Gregory Goss, Jinae Roa, Martin Tresguerres Acid/base and ionic regulation in hagfish, (Aug 2015): 277–298.https://doi.org/10.1201/b18935-12David H. Evans The Second Generation: MDIBL in the 1930s, (Jan 2015): 87–140.https://doi.org/10.1007/978-1-4939-2960-3_3Alison H. Doherty, Cameron K. Ghalambor, Seth W. Donahue Evolutionary Physiology of Bone: Bone Metabolism in Changing Environments, Physiology 30, no.11 (Jan 2015): 17–29.https://doi.org/10.1152/physiol.00022.2014M. B. Engelund, F. Chauvigne, B. M. Christensen, R. N. Finn, J. Cerda, S. S. Madsen Differential expression and novel permeability properties of three aquaporin 8 paralogs from seawater-challenged Atlantic salmon smolts, Journal of Experimental Biology 216, no.2020 (Jul 2013): 3873–3885.https://doi.org/10.1242/jeb.087890Agnieszka K. Dymowska, Pung-Pung Hwang, Greg G. Goss Structure and function of ionocytes in the freshwater fish gill, Respiratory Physiology & Neurobiology 184, no.33 (Dec 2012): 282–292.https://doi.org/10.1016/j.resp.2012.08.025Susan L. Edwards, William S. Marshall Principles and Patterns of Osmoregulation and Euryhalinity in Fishes, (Jan 2012): 1–44.https://doi.org/10.1016/B978-0-12-396951-4.00001-3Joseph Zydlewski, Michael P. Wilkie Freshwater to Seawater Transitions in Migratory Fishes, (Jan 2012): 253–326.https://doi.org/10.1016/B978-0-12-396951-4.00006-2Eric T. Schultz, Stephen D. McCormick Euryhalinity in An Evolutionary Context, (Jan 2012): 477–533.https://doi.org/10.1016/B978-0-12-396951-4.00010-4Suzanne Currie, Susan L. Edwards The curious case of the chemical composition of hagfish tissues—50years on, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 157, no.22 (Oct 2010): 111–115.https://doi.org/10.1016/j.cbpa.2010.06.164Yoshio Takei, Maho Ogoshi, Marty K. S. Wong, Shigenori Nobata Molecular and Functional Evolution of the Adrenomedullin Family in Vertebrates: What Do Fish Studies Tell Us?, (Sep 2009): 1–21.https://doi.org/10.1007/978-90-481-2909-6_1Frank G. Nordlie Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review, Reviews in Fish Biology and Fisheries 19, no.44 (Nov 2009): 481–564.https://doi.org/10.1007/s11160-009-9131-4B. A. Sardella, D. W. Baker, C. J. Brauner The effects of variable water salinity and ionic composition on the plasma status of the Pacific Hagfish (Eptatretus stoutii), Journal of Comparative Physiology B 179, no.66 (Apr 2009): 721–728.https://doi.org/10.1007/s00360-009-0355-3Frank G. Nordlie Environmental influences on regulation of blood plasma/serum components in teleost fishes: a review, Reviews in Fish Biology and Fisheries 62 (Apr 2009).https://doi.org/10.1007/s11160-009-9115-4Francesca Trischitta, Caterina Faggio Gossypol affects ion transport in the isolated intestine of the seawater adapted eel, Anguilla anguilla, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 151, no.11 (Sep 2008): 139–143.https://doi.org/10.1016/j.cbpa.2008.06.008David H. Evans Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 295, no.22 (Aug 2008): R704–R713.https://doi.org/10.1152/ajpregu.90337.2008Yoshio Takei Exploring novel hormones essential for seawater adaptation in teleost fish, General and Comparative Endocrinology 157, no.11 (May 2008): 3–13.https://doi.org/10.1016/j.ygcen.2008.03.021Yoshio Takei, Maho Ogoshi, Koji Inoue A 'reverse' phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates, Frontiers in Neuroendocrinology 28, no.44 (Oct 2007): 143–160.https://doi.org/10.1016/j.yfrne.2007.05.001HANS DITRICH The origin of vertebrates: a hypothesis based on kidney development, Zoological Journal of the Linnean Society 150, no.22 (Jun 2007): 435–441.https://doi.org/10.1111/j.1096-3642.2007.00311.xPatricia A. Wright Ionic, Osmotic, and Nitrogenous Waste Regulation, (Jan 2007): 283–318.https://doi.org/10.1016/S1546-5098(07)26006-6Francesca Trischitta, Caterina Faggio Effect of the flavonol quercetin on ion transport in the isolated intestine of the eel, Anguilla anguilla, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 143, no.11 (May 2006): 17–22.https://doi.org/10.1016/j.cbpc.2005.11.012Philip A. Veillette, Jason P. Breves, Danielle R. Reardon, Jennifer L. Specker Adaptation for water balance in the partial gastrointestinal tract of summer flounder, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 143, no.22 (Feb 2006): 211–217.https://doi.org/10.1016/j.cbpa.2005.11.023David H. Evans, Peter M. Piermarini, Keith P. Choe The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste, Physiological Reviews 85, no.11 (Jan 2005): 97–177.https://doi.org/10.1152/physrev.00050.2003H. Bartels Cellular composition and ultrastructure of the gill epithelium of larval and adult lampreys: Implications for osmoregulation in fresh and seawater, Journal of Experimental Biology 207, no.2020 (Sep 2004): 3447–3462.https://doi.org/10.1242/jeb.01157Peter D. Vize A Homeric view of kidney evolution: A reprint of H.W. Smith's classic essay with a new introduction, The Anatomical Record 277A, no.22 (Jan 2004): 344–354.https://doi.org/10.1002/ar.a.20017Francesca Trischitta, Maria Gabriella Denaro, Caterina Faggio Ion transport in the intestine ofGobius niger in both isotonic and hypotonic conditions, Journal of Experimental Zoology 301A, no.11 (Jan 2003): 49–62.https://doi.org/10.1002/jez.a.20002Don Bradshaw Vertebrate Ecophysiology, 97 (Jun 2012).https://doi.org/10.1017/CBO9780511840906Peter D. Vize, Thomas J. Carroll, John B. Wallingford Induction, Development, and Physiology of the Pronephric Tubules, (Jan 2003): 19–50.https://doi.org/10.1016/B978-012722441-1/50005-1Philip C.J. Donoghue, Ivan J. Sansom Origin and early evolution of vertebrate skeletonization, Microscopy Research and Technique 59, no.55 (Nov 2002): 352–372.https://doi.org/10.1002/jemt.10217Mark G.J Hartl, Stephen Hutchinson, Lawrence E Hawkins Organotin and osmoregulation: quantifying the effects of environmental concentrations of sediment-associated TBT and TPhT on the freshwater-adapted European flounder, Platichthys flesus (L.), Journal of Experimental Marine Biology and Ecology 256, no.22 (Jan 2001): 267–278.https://doi.org/10.1016/S0022-0981(00)00320-8P.A. Wright, H.J. Fyhn Ontogeny of nitrogen metabolism and excretion, (Jan 2001): 149–200.https://doi.org/10.1016/S1546-5098(01)20006-5Lüder M. Fels, Sabine Kastner, Hilmar Stolte The Hagfish Kidney as a Model to Study Renal Physiology and Toxicology, (Jan 1998): 347–363.https://doi.org/10.1007/978-94-011-5834-3_23Raymond Gllles, Eric Delpire Variations in Salinity, Osmolarity, and Water Availability: Vertebrates and Invertebrates, (Jan 2011): 1523–1586.https://doi.org/10.1002/cphy.cp130222Leonard B. Kirschner Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates, (Jan 2011): 577–622.https://doi.org/10.1002/cphy.cp130109Carl Gans, Abbot S. Gaunt, Paul W. Webb Vertebrate Locomotion, (Jan 2011): 55–213.https://doi.org/10.1002/cphy.cp130103Vernon Henderson Relationship of the tubular system with other organelles in chlorride cells of the channel catfish,Ictalurus punctatus, Journal of Morphology 224, no.11 (Apr 1995): 31–45.https://doi.org/10.1002/jmor.1052240105Christopher A. Loretz 2 Electrophysiology of Ion Transport in Teleost Intestinal Cells, (Jan 1995): 25–56.https://doi.org/10.1016/S1546-5098(08)60241-1Stepan P. Gambaryan Microdissectional investigation of the nephrons in some fishes, amphibians, and reptiles inhabiting different environment, Journal of Morphology 219, no.33 (Mar 1994): 319–339.https://doi.org/10.1002/jmor.1052190311Philip A. Veillette, Ronald J. White, Jennifer L. Specker Changes in intestinal fluid transport in Atlantic salmon (Salmo salar L) during parr-smolt transformation, Fish Physiology and Biochemistry 12, no.33 (Oct 1993): 193–202.https://doi.org/10.1007/BF00004367Greg Graffin A new locality of fossiliferous Harding Sandstone: evidence for freshwater Ordovician vertebrates, Journal of Vertebrate Paleontology 12, no.11 (Mar 1992): 1–10.https://doi.org/10.1080/02724634.1992.10011427M. Pisam, A. Rambourg Mitochondria-Rich Cells in the Gill Epithelium of Teleost Fishes: An Ultrastructural Approach, (Jan 1991): 191–232.https://doi.org/10.1016/S0074-7696(08)61504-1S. Hutchinson, L. E. Hawkins The influence of salinity on water balance in 0-group flounders, Platichthys flesus (L), Journal of Fish Biology 36, no.55 (May 1990): 751–764.https://doi.org/10.1111/j.1095-8649.1990.tb04329.xJean-Michel Nance, Michel Bornancin, François Sola, Gilles Boeuf, Jean-Denis Dutil Study of transbranchial Na+ exchange in Salmo salar smolts and post-smolts directly transferred to sea water, Comparative Biochemistry and Physiology Part A: Physiology 96, no.22 (Jan 1990): 303–308.https://doi.org/10.1016/0300-9629(90)90697-QM. W. Hardisty, I. C. Potter, R. W. Hilliard Physiological adaptations of the living agnathans, Earth and Environmental Science Transactions of the Royal Society of Edinburgh 80, no.3-43-4 (Nov 2011): 241–254.https://doi.org/10.1017/S0263593300028686Robert W Griffith Freshwater or marine origin of the vertebrates?, Comparative Biochemistry and Physiology Part A: Physiology 87, no.33 (Jan 1987): 523–531.https://doi.org/10.1016/0300-9629(87)90355-0 The vertebrate invasion of fresh water, Philosophical Transactions of the Royal Society of London. B, Biological Sciences 309, no.11381138 (Jan 1997): 243–258.https://doi.org/10.1098/rstb.1985.0085R. Kirsch, W. Humbert, J. L. Rodeau Control of the Blood Osmolarity in Fishes with References to the Functional Anatomy of the Gut, (Jan 1984): 67–92.https://doi.org/10.1007/978-3-642-45574-2_5Jacques Isaia 1 Water and Nonelectrolyte Permeation, (Jan 1984): 1–38.https://doi.org/10.1016/S1546-5098(08)60180-6P. Payan, J.P. Girard, N. Mayer-Gostan 2 Branchial Ion Movements in Teleosts: The Roles of Respiratory and Chloride Cells, (Jan 1984): 39–63.https://doi.org/10.1016/S1546-5098(08)60181-8A.J. Boucot, Christine Janis Environment of the Early Paleozoic vertebrates, Palaeogeography, Palaeoclimatology, Palaeoecology 41, no.3-43-4 (Apr 1983): 251–287.https://doi.org/10.1016/0031-0182(83)90091-3B. HOLSTEIN, B. BRIGEL Effects of exogenous angiotensin II in the Atlantic cod, Gadus morhua Observations on gastric acid secretion, gastric sham drinking, and gastric mucosal plasma flow ( 14 C-aniline clearance), Acta Physiologica Scandinavica 113, no.33 (Nov 1981): 363–369.https://doi.org/10.1111/j.1748-1716.1981.tb06908.xLeroy C. Folmar, Walton W. Dickhoff The parr—Smolt transformation (smoltification) and seawater adaptation in salmonids, Aquaculture 21, no.11 (Sep 1980): 1–37.https://doi.org/10.1016/0044-8486(80)90123-4Edward G. Schneider, Robert C. Hanson, Jennifer W. Childers, Edward M. Fitzgerald, Sarah D. Gleason Is Phosphate Secreted by the Kidney?, (Jan 1980): 59–78.https://doi.org/10.1007/978-1-4615-9152-8_3Dietrich Starck Stammesgeschichte und Klassifikation der Vertebrata, (Jan 1978): 81–256.https://doi.org/10.1007/978-3-642-51568-2_3Olav L. M. Bijvoet, Pieter H. Reitsma Phylogeny of Renal Phosphate Transport in the Vertebrates, (Jun 2013): 41–53.https://doi.org/10.1007/978-1-4613-4217-5_4 Terry L. Mullen , and Ronald H. Alvarado Osmotic and Ionic Regulation in Amphibians, Physiological Zoology 49, no.11 (Sep 2015): 11–23.https://doi.org/10.1086/physzool.49.1.30155673T. Hirano, M. Morisawa, M. Ando, S. Utida Adaptive Changes in Ion and Water Transport Mechanism in the Eel Intestine, (Jan 1976): 301–337.https://doi.org/10.1007/978-94-011-6156-5_16Charles F. Phleger Lipid synthesis by Antimora rostrata, an abyssal codling from the Kona coast, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 52, no.11 (Sep 1975): 97–99.https://doi.org/10.1016/0305-0491(75)90122-4G. Zwingelstein, R. Meister, G. Brichon Métabolisme comparé des phospholipides des organes effecteurs de l'osmorégulation chez l'anguille européenne (Anguilla anguilla), Biochimie 57, no.55 (Jul 1975): 609–622.https://doi.org/10.1016/S0300-9084(75)80142-8Robert K. McBride, Brent D. Richards The effects of some herbicides and pesticides on sodium uptake by isolated perfused gills from the carp Cyprinus Carpio, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 51, no.11 (Jun 1975): 105–109.https://doi.org/10.1016/0306-4492(75)90046-5Ogawa Mizuho The effects of bovine prolactin, sea water and environmental calcium on water influx in isolated gills of the euryhaline teleosts, Anguilla japonica and Salmo gairdnerii, Comparative Biochemistry and Physiology Part A: Physiology 49, no.33 (Nov 1974): 545–553.https://doi.org/10.1016/0300-9629(74)90567-2Robert W. Griffith, Bruce L. Umminger, Blake F. Grant, Peter K. T. Pang, Grace E. Pickford Serum composition of the coelacanth,Latimeria chalumnae Smith, Journal of Experimental Zoology 187, no.11 (Jan 1974): 87–102.https://doi.org/10.1002/jez.1401870111G. P. Haywood Hypo-osmotic regulation coupled with reduced metabolic urea in the dogfish Poroderma africanum: An analysis of serum osmolarity, chloride, and urea, Marine Biology 23, no.22 (Jan 1973): 121–127.https://doi.org/10.1007/BF00389169T.J. Shuttleworth A new isolated perfused gill preparation for the study of the mechanisms of ionic regulation in teleosts, Comparative Biochemistry and Physiology Part A: Physiology 43, no.11 (Sep 1972): 59–64.https://doi.org/10.1016/0300-9629(72)90469-0A.W. Cuthbert, J. Maetz Amiloride and sodium fluxes across fish gills in fresh water and in sea water, Comparative Biochemistry and Physiology Part A: Physiology 43, no.11 (Sep 1972): 227–232.https://doi.org/10.1016/0300-9629(72)90487-2Alfred Sherwood Romer The Vertebrate as a Dual Animal — Somatic and Visceral, (Jan 1972): 121–156.https://doi.org/10.1007/978-1-4684-9063-3_5Frederick Crescitelli The Visual Cells and Visual Pigments of the Vertebrate Eye, (Jan 1972): 245–363.https://doi.org/10.1007/978-3-642-65066-6_8P. Payan, J. Maetz Balance hydrique chez les Elasmobranches: Arguments en faveur d'un contrôle endocrinien, General and Comparative Endocrinology 16, no.33 (Jun 1971): 535–554.https://doi.org/10.1016/0016-6480(71)90119-5Paul P Rudy, Roger C Wagner Water permeability in the pacific hagfish Polistotrema stouti and the staghorn sculpin Leptocottus armatus, Comparative Biochemistry and Physiology 34, no.22 (May 1970): 399–403.https://doi.org/10.1016/0010-406X(70)90180-5Thomas H. Dietz, Edmund D. Brodie Blood ion concentrations as a function of developmental stage in the gopher snake, Pituophis melanoleucus catenifer, Comparative Biochemistry and Physiology 30, no.44 (Aug 1969): 673–678.https://doi.org/10.1016/0010-406X(69)92145-8KEITH STEWART THOMSON THE BIOLOGY OF THE LOBE-FINNED FISHES, Biological Reviews 44, no.11 (Feb 1969): 91–154.https://doi.org/10.1111/j.1469-185X.1969.tb00823.xCleveland P. Hickman, Benjamin F. Trump 2 The Kidney, (Jan 1969): 91–239.https://doi.org/10.1016/S1546-5098(08)60083-7Frank P. Conte 3 Salt Secretion, (Jan 1969): 241–292.https://doi.org/10.1016/S1546-5098(08)60084-9J. Piiper, D. Baumgarten-Schumann Transport of O2 and CO2 by water and blood in gas exchange of the dogfish (Scyliorhinus stellaris), Respiration Physiology 5, no.33 (Oct 1968): 326–337.https://doi.org/10.1016/0034-5687(68)90024-8D. C. Potts, R. W. Morris Some body fluid characteristics of the Antarctic fish, Trematomus bernacchii, Marine Biology 1, no.44 (Jun 1968): 269–276.https://doi.org/10.1007/BF00360775J. MAETZ, E. SKADHAUGE Drinking Rates and Gill Ionic Turnover in relation to External Salinities in the Eel, Nature 217, no.51265126 (Jan 1968): 371–373.https://doi.org/10.1038/217371a0Brahim Lahlou Excretion renale chez un poisson euryhalin, le flet (Platichthys flesus L.): caracteristiques de l'urine normale en eau douce et en eau de mer et effets des changements de milieu, Comparative Biochemistry and Physiology 20, no.33 (Mar 1967): 925–938.https://doi.org/10.1016/0010-406X(67)90064-3GWYNETH PARRY OSMOTIC ADAPTATION IN FISHES, Biological Reviews 41, no.33 (Aug 1966): 392–440.https://doi.org/10.1111/j.1469-185X.1966.tb01499.xR. Beutler Vergleichende Physiologische Chemie, (Jan 1966): 659–970.https://doi.org/10.1007/978-3-662-37018-6_2Elio Borghese Studies on the nephron of an elasmobranch fish Scyliorhinus stellaris (L.), Zeitschrift f�r Zellforschung und Mikroskopische Anatomie 72, no.11 (Jan 1966): 88–99.https://doi.org/10.1007/BF00336899R. Morris Studies on Salt and Water Balance in Myxine Glutinosa (L.), Journal of Experimental Biology 42, no.22 (Apr 1965): 359–371.https://doi.org/10.1242/jeb.42.2.359Charles W. Philpott Halide localization in the teleost chloride cell and its identification by selected area electron diffraction, Protoplasma 60, no.11 (Mar 1965): 7–23.https://doi.org/10.1007/BF01248125F.W. Munz, W.N. McFarland Regulatory function of a primitive vertebrate kidney, Comparative Biochemistry and Physiology 13, no.44 (Dec 1964): 381–400.https://doi.org/10.1016/0010-406X(64)90031-3R. Motais, J. Maetz Action des hormones neurohypophysaires sur les échanges de sodium (mesurés à l'aide du radio-sodium Na24) chez un téléostéen euryhalin: Platichthys flesus L, General and Comparative Endocrinology 4, no.22 (Apr 1964): 210–224.https://doi.org/10.1016/0016-6480(64)90054-1Brenda M. Sherratt, I. Chester Jones, D. Bellamy Water and electrolyte composition of the body and renal function of the eel (Anguilla anguilla L.), Comparative Biochemistry and Physiology 11, no.11 (Jan 1964): 9–18.https://doi.org/10.1016/0010-406X(64)90091-X REFERENCES, (Jan 1964): 356–403.https://doi.org/10.1016/B978-0-08-013598-4.50015-8A.P.M. Lockwood "Ringer", solutions and some notes on the physiological basis of their ionic composition, Comparative Biochemistry and Physiology 2, no.44 (Apr 1961): 241–289.https://doi.org/10.1016/0010-406X(61)90113-XP. N. SRIVASTAVA Bacterial Effect and Radiophosphorus Assimilation in Organic and Inorganic Forms in Salmon, Nature 187, no.47314731 (Jul 1960): 83–84.https://doi.org/10.1038/187083a0P. N. Srivastava EFFECT OF BACTERIA ON RADIOPHOSPHORUS METABOLISM IN YEARLING SALMON, SALMO SALAR L., Canadian Journal of Zoology 38, no.33 (Jun 1960): 525–532.https://doi.org/10.1139/z60-056 W. N. Holmes , and Gael H. Stott Studies of the Respiration Rates of Excretory Tissues in the Cutthroat Trout (Salmo clarki clarki) II. Effect of Transfer to Sea Water, Physiological Zoology 33, no.11 (Sep 2015): 15–20.https://doi.org/10.1086/physzool.33.1.30155412FREDA BROWN, W.D. STEIN Balance of Water, Electrolytes, and Nonelectrolytes, (Jan 1960): 403–470.https://doi.org/10.1016/B978-0-12-395543-2.50015-1J. SHAW The Mechanisms of Osmoregulation, (Jan 1960): 471–518.https://doi.org/10.1016/B978-0-12-395543-2.50016-3P. R. S. Tampi On the renal unit in some common teleosts, Proceedings / Indian Academy of Sciences 50, no.22 (Aug 1959): 88–104.https://doi.org/10.1007/BF03052041Clark P. Read, Lee T. Douglas, John E. Simmons Urea and osmotic properties of tapeworms from elasmobranchs, Experimental Parasitology 8, no.11 (Feb 1959): 58–75.https://doi.org/10.1016/0014-4894(59)90008-6 E. Lovell Becker , Robert Bird , John W. Kelly , John Schilling , Sidney Solomon , and Nelson Young Physiology of Marine Teleosts. I. Ionic Composition of Tissue, Physiological Zoology 31, no.33 (Sep 2015): 224–227.https://doi.org/10.1086/physzool.31.3.30157843Evelyn Howard Ontogenetic changes in the freezing point and sodium and potassium content of the subgerminal fluid and blood plasma of the chick embryo, Journal of Cellular and Comparative Physiology 50, no.33 (Dec 1957): 451–470.https://doi.org/10.1002/jcp.1030500309Douglas Hubble SOME PRINCIPLES OF HOMŒSTASIS, The Lancet 270, no.69906990 (Aug 1957): 301–305.https://doi.org/10.1016/S0140-6736(57)92204-3JAMES D. ROBERTSON THE HABITAT OF THE EARLY VERTEBRATES, Biological Reviews 32, no.22 (May 1957): 156–187.https://doi.org/10.1111/j.1469-185X.1957.tb01561.xKatherine A. Zworykin, George B. Chapman Television microscopy of sporulation and spore germination of Bacillus cereus, Journal of Cellular and Comparative Physiology 48, no.22 (Oct 1956): 301–316.https://doi.org/10.1002/jcp.1030480211Stanwood S. Schmidt Ureteral Obstruction in the Aglomerular Kidney, The Journal of Urology 73, no.22 (Feb 1955): 226–234.https://doi.org/10.1016/S0022-5347(17)67389-0W. D. L. Ride A possible selective mechanism in the evolution of the vertebrate heart., Proceedings of the Zoological Society of London 123, no.44 (Oct 2009): 753–756.https://doi.org/10.1111/j.1096-3642.1954.tb00201.xRoy P. Forster A comparative study of renal function in marine teleosts, Journal of Cellular and Comparative Physiology 42, no.33 (Dec 1953): 487–509.https://doi.org/10.1002/jcp.1030420312LORIN J. MULLINS Osmotic Regulation in Fish as Studied with Radiosotopes, Acta Physiologica Scandinavica 21, no.44 (Dec 1950): 303–314.https://doi.org/10.1111/j.1748-1716.1950.tb00738.xH. Heller The comparative physiology of the neurohypophysis, Experientia 6, no.1010 (Oct 1950): 368–376.https://doi.org/10.1007/BF02178929 Roland Abegg Some Effects of Inorganic Salts on the Blood Specific Gravity and Tissue Fluids of the Bluegill Lepomis macrochirus Raf., Physiological Zoology 23, no.22 (Sep 2015): 124–134.https://doi.org/10.1086/physzool.23.2.30152070 REFERENCES, (Jan 1949): 130–143.https://doi.org/10.1016/B978-0-12-395521-0.50014-2D. Eugene Copeland The cytological basis of chloride transfer in the gills of Fundulus heteroclitus, Journal of Morphology 82, no.22 (Mar 1948): 201–227.https://doi.org/10.1002/jmor.1050820204D. Keilin, E. F. Hartree Comparative study of spores and vegetative forms ofBacillus Subtilis, Antonie van Leeuwenhoek 12, no.1-41-4 (Mar 1947): 115–128.https://doi.org/10.1007/BF02272657W. v. Buddenbrock Einige Bemerkungen zum Wasserhaushalt der Wassertiere, Experientia 3, no.22 (Feb 1947): 52–57.https://doi.org/10.1007/BF02164386L. C. BEADLE OSMOTIC REGULATION and THE FAUNAS OF INLAND WATERS, Biological Reviews 18, no.44 (Oct 1943): 172–183.https://doi.org/10.1111/j.1469-185X.1943.tb00297.xP. N. Krishna Ayyar, V. Margabandhu Biology of the Cotton Stem-Weevil, Pempherulus affinis, Fst., under controlled physical Conditions, Bulletin of Entomological Research 32, no.0101 (Jul 2009): 61.https://doi.org/10.1017/S000748530000523X Gordon Gunter Critical Comments on the Theory of the Influence of the Fluviatile Environment on the Shape of Early Fishes, The American Naturalist 75, no.757757 (Oct 2015): 188–192.https://doi.org/10.1086/280952Willie W. Smith The excretion of phosphate in the dogfish, Squalus acanthias, Journal of Cellular and Comparative Physiology 14, no.11 (Aug 1939): 95–102.https://doi.org/10.1002/jcp.1030140109Allan L. Grafflin The absorption of fluorescein from fresh water and salt water by Fundulus heteroclitus, as judged by a study of the kidney with the fluorescence microscope, Journal of Cellular and Comparative Physiology 12, no.22 (Oct 1938): 167–170.https://doi.org/10.1002/jcp.1030120203John Keosian Secretion in tissue cultures. III. Tonicity of fluid in chick mesonephric cysts, Journal of Cellular and Comparative Physiology 12, no.11 (Aug 1938): 23–37.https://doi.org/10.1002/jcp.1030120103JOSEPH NEEDHAM CONTRIBUTIONS OF CHEMICAL PHYSIOLOGY TO THE PROBLEM OF REVERSIBILITY IN EVOLUTION, Biological Reviews 13, no.33 (Jul 1938): 225–251.https://doi.org/10.1111/j.1469-185X.1938.tb00515.xJames A. Shannon The excretion of uric acid by the chicken, Journal of Cellular and Comparative Physiology 11, no.11 (Feb 1938): 135–148.https://doi.org/10.1002/jcp.1030110110N. Kesava Panikkar, R. Gopala Aiyar The brackish-water fauna of Madras, Proceedings / Indian Academy of Sciences 6, no.55 (Nov 1937): 284–337.https://doi.org/10.1007/BF03051463Allan L. Grafflin Observations upon the aglomerular nature of certain teleostean kidneys, Journal of Morphology 61, no.11 (Jun 1937): 165–173.https://doi.org/10.1002/jmor.1050610109Allan L. Grafflin The problem of adaptation to fresh and salt water in the teleosts, viewed from the standpoint of the structure of the renal tubules, Journal of Cellular and Comparative Physiology 9, no.33 (Apr 1937): 469–476.https://doi.org/10.1002/jcp.1030090313ALLAN L. GRAFFLIN RENAL FUNCTION IN MARINE TELEOSTS : IV. THE EXCRETION OF INORGANIC PHOSPHATE IN THE SCULPIN, The Biological Bulletin 71, no.22 (Sep 2016): 360–374.https://doi.org/10.2307/1537441ALLAN L. GRAFFLIN RENAL FUNCTION IN MARINE TELEOSTS: III. THE EXCRETION OF UREA, The Biological Bulletin 70, no.22 (Sep 2016): 228–235.https://doi.org/10.2307/1537469ERNEST BALDWIN ARGINASE, Biological Reviews 11, no.22 (Apr 1936): 247–268.https://doi.org/10.1111/j.1469-185X.1936.tb00503.xHomer W. Smith The composition of urine in the seal, Journal of Cellular and Comparative Physiology 7, no.33 (Feb 1936): 465–474.https://doi.org/10.1002/jcp.1030070314W. Bargmann �ber den Bau des Nierenglomerulus der Reptilien, Zeitschrift f�r Zellforschung und Mikroskopische Anatomie 25, no.22 (Jan 1936): 335–340.https://doi.org/10.1007/BF00375542HOMER W. SMITH. THE RETENTION AND PHYSIOLOGICAL ROLE OF UREA IN THE ELASMOBRANCHII, Biological Reviews 11, no.11 (Jan 1936): 49–82.https://doi.org/10.1111/j.1469-185X.1936.tb00497.xALLAN L. GRAFFLIN RENAL FUNCTION IN MARINE TELEOSTS: I. URINE FLOW AND URINARY CHLORIDE, The Biological Bulletin 69, no.33 (Sep 2016): 391–402.https://doi.org/10.2307/1537399Lois E. Te Winkel A study of mistichthys luzonensis with special reference to conditions correlated with reduced size, Journal of Morphology 58, no.22 (Dec 1935): 463–535.https://doi.org/10.1002/jmor.1050580207Ernst Huf Über den Einfluß der Narkose auf den Wasser- und Mineralhaushalt bei Süßwassertieren, Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere 235, no.11 (Dec 1935): 129–140.https://doi.org/10.1007/BF01764170Richard W. Vilter The morphology and development of the metanephric glomerulus in the pigeon, The Anatomical Record 63, no.44 (Nov 1935): 371–385.https://doi.org/10.1002/ar.1090630406ALLAN L. GRAFFLIN CHLORIDE AND TOTAL OSMOTIC PRESSURE IN THE BLOOD OF MARINE TELEOSTS, The Biological Bulletin 69, no.22 (Sep 2016): 245–258.https://doi.org/10.2307/1537423Gerrit Bevelander A comparative study of the branchial epithelium in fishes, with special reference to extrarenal excretion, Journal of Morphology 57, no.22 (Jun 1935): 335–351.https://doi.org/10.1002/jmor.1050570203Robert W. Clarke The xylose clearance of myoxocephalus octodecimspinosus under normal and diuretic conditions, Journal of Cellular and Comparative Physiology 5, no.11 (Aug 1934): 73–82.https://doi.org/10.1002/jcp.1030050106Allan L. Grafflin, David Ennis The effect of blockage of the gastrointestinal tract upon urine formation in a marine teleost, Myoxocephalus octodecimspinosus, Journal of Cellular and Comparative Physiology 4, no.33 (Apr 1934): 283–296.https://doi.org/10.1002/jcp.1030040302H. L. A. Tarr The Relation of the Composition of the Culture Medium to the Formation of Endospores by Aerobic Bacilli, Journal of Hygiene 32, no.0404 (May 2009): 535–543.https://doi.org/10.1017/S0022172400018258Robert W. Clarke, Homer W. Smith Absorption and excretion of water and salts by the elasmobranch fishes III. The use of xylose as a measure of the glomerular filtrate in squalus acanthias, Journal of Cellular and Comparative Physiology 1, no.22 (Apr 1932): 131–143.https://doi.org/10.1002/jcp.1030010202
Referência(s)