Polar Low Dynamics
1992; American Meteorological Society; Volume: 49; Issue: 24 Linguagem: Inglês
10.1175/1520-0469(1992)049 2.0.co;2
ISSN1520-0469
AutoresMichael T. Montgomery, Brian F. Farrell,
Tópico(s)Geophysics and Gravity Measurements
ResumoPolar lows are intense subsynoptic-scale cyclones that form over high-latitude oceans in association with deep cumulus convection and strong ambient baroclinicity. Recent observations indicate that polar lows are generally initiated by a nonaxisymmetric interaction between a surface disturbance and an upper-level mobile trough. Extant theories of polar low formation preclude study of such a process since they either constrain their models to be axisymmetric, or do not explicitly account for this transient interaction. In this work the physics of interacting upper- and lower-level potential vorticity structures is studied as an initial-value problem using a three-dimensional nonlinear geostrophic momentum model that incorporates moist processes and includes strong baroclinic dynamics. Model results illustrate the rapid formation of an intense small-scale cyclone whose structure is consistent with observations of mature polar lows. A conceptual model of polar low development is proposed. In the first stage of development, called induced self-development, a mobile upper trough initiates a rapid low-level spinup due to the enhanced omega response in a conditionally neutral baroclinic atmosphere. A secondary development follows, called diabatic destabilization, that is associated with the production of low-level potential vorticity by diabatic processes. Diabatic destabilization represents a simple mechanism for maintaining the intensity of polar lows until they reach land. In exceptional instances of negligible upper-level forcing, the latter may also describe the gradual intensification of small-scale cyclones in regions of sustained neutrality and surface baroclinicity. Ideas regarding polar low equilibration and prospects for a unified theory of arctic and midlatitude cyclones are discussed.
Referência(s)