Graph drawings with few slopes
2006; Elsevier BV; Volume: 38; Issue: 3 Linguagem: Inglês
10.1016/j.comgeo.2006.08.002
ISSN1879-081X
AutoresVida Dujmović, Matthew Suderman, David R. Wood,
Tópico(s)Limits and Structures in Graph Theory
ResumoThe slope-number of a graph G is the minimum number of distinct edge slopes in a straight-line drawing of G in the plane. We prove that for Δ⩾5 and all large n, there is a Δ-regular n-vertex graph with slope-number at least n1−8+εΔ+4. This is the best known lower bound on the slope-number of a graph with bounded degree. We prove upper and lower bounds on the slope-number of complete bipartite graphs. We prove a general upper bound on the slope-number of an arbitrary graph in terms of its bandwidth. It follows that the slope-number of interval graphs, cocomparability graphs, and AT-free graphs is at most a function of the maximum degree. We prove that graphs of bounded degree and bounded treewidth have slope-number at most O(logn). Finally we prove that every graph has a drawing with one bend per edge, in which the number of slopes is at most one more than the maximum degree. In a companion paper, planar drawings of graphs with few slopes are also considered.
Referência(s)