A smart and versatile theranostic nanomedicine platform based on nanoporphyrin
2014; Nature Portfolio; Volume: 5; Issue: 1 Linguagem: Inglês
10.1038/ncomms5712
ISSN2041-1723
AutoresYuanpei Li, Tzu‐yin Lin, Yan Luo, Qiangqiang Liu, Wenwu Xiao, Wenchang Guo, Diana Lac, Hongyong Zhang, Caihong Feng, Sebastian Wachsmann‐Hogiu, Jeffrey H. Walton, Simon R. Cherry, Douglas J. Rowland, David L. Kukis, Chong-xian Pan, Kit S. Lam,
Tópico(s)Nanoparticle-Based Drug Delivery
ResumoMultifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise towards personalized nanomedicine. However, attaining consistently high performance of these functions in vivo in one single nanoconstruct remains extremely challenging. Here we demonstrate the use of one single polymer to develop a smart ‘all-in-one’ nanoporphyrin platform that conveniently integrates a broad range of clinically relevant functions. Nanoporphyrins can be used as amplifiable multimodality nanoprobes for near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), positron emission tomography (PET) and dual modal PET-MRI. Nanoporphyrins greatly increase the imaging sensitivity for tumour detection through background suppression in blood, as well as preferential accumulation and signal amplification in tumours. Nanoporphyrins also function as multiphase nanotransducers that can efficiently convert light to heat inside tumours for photothermal therapy (PTT), and light to singlet oxygen for photodynamic therapy (PDT). Furthermore, nanoporphyrins act as programmable releasing nanocarriers for targeted delivery of drugs or therapeutic radio-metals into tumours. Nanoparticles can be used for therapeutic and diagnostic purposes. Here, the authors report that nanoparticles made of a single chemical building block, called nanoporphyrins, incorporate eight different functionalities, including various types of imaging, drug delivery and cancer therapy.
Referência(s)