Artigo Acesso aberto

The anaerobic biodegradation ofo-, m- andp-cresol by sulfate-reducing bacterial enrichment cultures obtained from a shallow anoxic aquifer

1989; Springer Science+Business Media; Volume: 4; Issue: 4 Linguagem: Inglês

10.1007/bf01577348

ISSN

0169-4146

Autores

Joseph M. Suflita, Li-Nuo Liang, Adesh Saxena,

Tópico(s)

Enhanced Oil Recovery Techniques

Resumo

Sulfate-reducing bacterial enrichments were obtained from a shallow anoxic aquifer for their ability to metabolize eithero-, m-, orp-cresol. GC/MS and simultaneous adaptation experiments suggested that the anaerobic decomposition ofp-cresol proceeds by the initial oxidation of the aryl methyl group to formp-hydroxybenzoic acid. This intermediate was then converted to benzoic acid. Benzoic acid and a hydroxybenzaldehyde were also found in spent culture fluids from ano-cresol-degrading enrichment culture. This result, in addition to others, suggested thato-cresol may also be anaerobically degraded by the oxidation of the methyl substituent. An alternate pathway for anaerobicm-cresol decomposition might exist. Enrichment cultures obtained with eitherp- oro-cresol degraded both of these substrates but notm-cresol. In contrast, am-cresol enrichment culture did not metabolize theortho orpara isomers. Anaerobic biodegradation in all enrichment cultures was inhibited by molybdate and oxygen, and was dependent on the presence of sulfate as a terminal electron acceptor. The stoichiometry of sulfate-reduction and substrate depletion by the various enrichment cultures indicated that the parent cresol isomers were completely mineralized. This result was confirmed by the conversion of14C-labeledp-cresol to14CO2. These results help clarify the fate of alkylated aromatic chemicals in anoxic aquifers.

Referência(s)