Artigo Acesso aberto Revisado por pares

Chemical analyses of meteorites at the Smithsonian Institution: An update

2006; Wiley; Volume: 41; Issue: 9 Linguagem: Inglês

10.1111/j.1945-5100.2006.tb00528.x

ISSN

1945-5100

Autores

E. Jarosewich,

Tópico(s)

Planetary Science and Exploration

Resumo

Meteoritics & Planetary ScienceVolume 41, Issue 9 p. 1381-1382 Free Access Chemical analyses of meteorites at the Smithsonian Institution: An update Eugene Jarosewich, Corresponding Author Eugene Jarosewich Department of Mineral Sciences, Smithsonian Institution, Washington, D.C., 20560, USA.[email protected]Search for more papers by this author Eugene Jarosewich, Corresponding Author Eugene Jarosewich Department of Mineral Sciences, Smithsonian Institution, Washington, D.C., 20560, USA.[email protected]Search for more papers by this author First published: 26 January 2010 https://doi.org/10.1111/j.1945-5100.2006.tb00528.xCitations: 26AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Abstract— Thirteen new meteorites and three meteorite inclusions have been analyzed. Their results have been incorporated into earlier published data for a comprehensive reference to all analyzed meteorites at the Smithsonian Institution. The six tables facilitate a convenient overlook of meteorite data. Table 1 presents an alphabetical list of analyzed meteorites, Table 2 chemical analyses of stony meteorites, Table 3 chemical analyses of iron meteorites, Table 4 elemental composition of stony meteorites, Table 5 average composition of carbonaceous chondrites and achondrites (falls and finds), and Table 6 presents average composition of H, L, LL, and Antarctic chondrites (falls and finds). The tables are available online at the journal's Web site http:meteoritics.org. REFERENCES Burbine T. H., McCoy T. J., Jarosewich E., and Sunshine J. M. 2003. Deriving asteroid mineralogies from reflectance spectra: Implication for the MUSES-C target asteroid. Antarctic Meteorite Research 16: 185– 195. Burbine T. H. and O'Brien K. M. 2004. Determining the possible building blocks of Earth and Mars. Meteoritics & Planetary Science 39: 667– 681. Evans L. G., Starr R. D., Brückner J., Reedy R. C., Boynton W. V., Trombka J. I., Goldsten J. O., Masarik J., Nittler L. R., and McCoy T. J. 2001. Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on Eros. Meteoritics & Planetary Science 36: 1639– 1660. Fagan T. J., Taylor G. J., Keil K., Bunch T. E., Wittke J. H., Korotev R. L., Jollieff B. L., Gillis J. J., Haskin L. A., Jarosewich E., Clayton R. N., Mayeda T. K., Fernandes V. A., Burgess R., Turner G., Eugster O., and Lorenzetti S. 2002. Northwest Africa 032: Product of lunar volcanism. Meteoritics & Planetary Science 37: 371– 394. Grady M. M. 2000. Catalogue of meteorites, 5th ed. Cambridge: Cambridge University Press. 689 p. Jarosewich E. 1990. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25: 323– 337. McSween H. Y., Jr. and Bennet M. E., III, and Jarosewich E. 1991. The mineralogy of ordinary chondrites and implication for asteroid spectrophotometry. Icarus 96: 107– 116. Nittler L. R., McCoy T. J., Clark P. E., Murphy M. E., Trombka J. I., and Jarosewich E. 2004. Bulk element composition of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarctic Meteorite Research 17: 231– 251. Nittler L. R., Starr R. D., Lim L., McCoy T. J., Burbine T. H., Reedy R. C., Trombka J. I., Gorenstein P., Squyres S. W., Boynton W. V., McClanahan T. P., Bhangoo J. S., Clark P. E., Murphy M. E. and Killen R. 2001. X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics & Planetary Science 36: 1673– 1695. Olsen E., Davis A., Clarke R. S. Jr., Schultz L., Weber H. W., Clayton R., Mayeda T., Jarosewich E., Sylvester P., Grossman L., Wang M-S., Lipschutz M. E., Steele I. M., and Schwade J. 1994. Watson: A new link in the IIE iron chain. Meteoritics 29: 200– 213. Russell S. S., McCoy T. J., Jarosewich E., and Ash R. D. 1998. The Burnwell, Kentucky, low iron oxide chondrite fall: Description, classification and origin. Meteoritics & Planetary Science 33: 853– 856. Salisbury J. W., D'Aria D. M., and Jarosewich E. 1991. Mid-infrared (2.5–13.5 μm) spectral properties of powdered stony meteorites. Icarus 92: 280– 297. Citing Literature Supporting Information Supporting Information: Filename Description Jarosewich_TABLE 1.xls63 KB Supporting info item Jarosewich_TABLE 2.xls111 KB Supporting info item Jarosewich_TABLE 3.xls41 KB Supporting info item Jarosewich_TABLE 4.xls108 KB Supporting info item Jarosewich_TABLE 5.xls20 KB Supporting info item Jarosewich_TABLE 6.xls19 KB Supporting info item Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume41, Issue9September 2006Pages 1381-1382 ReferencesRelatedInformation

Referência(s)