Artigo Revisado por pares

Use‐ and Voltage‐Dependent Block of the Sodium Channel by Saxitoxin

1986; Wiley; Volume: 479; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1986.tb15563.x

ISSN

1749-6632

Autores

Vincent L. Salgado, Jay Z. Yeh, Toshio Narahashi,

Tópico(s)

Neuroscience and Neuropharmacology Research

Resumo

Annals of the New York Academy of SciencesVolume 479, Issue 1 p. 84-95 Use- and Voltage-Dependent Block of the Sodium Channel by Saxitoxin VINCENT L. SALGADO, VINCENT L. SALGADO Department of Pharmacology Northwestern University Medical School Chicago, Illinois 60611Search for more papers by this authorJAY Z. YEH, JAY Z. YEH Department of Pharmacology Northwestern University Medical School Chicago, Illinois 60611Search for more papers by this authorTOSHIO NARAHASHI, TOSHIO NARAHASHI Department of Pharmacology Northwestern University Medical School Chicago, Illinois 60611Search for more papers by this author VINCENT L. SALGADO, VINCENT L. SALGADO Department of Pharmacology Northwestern University Medical School Chicago, Illinois 60611Search for more papers by this authorJAY Z. YEH, JAY Z. YEH Department of Pharmacology Northwestern University Medical School Chicago, Illinois 60611Search for more papers by this authorTOSHIO NARAHASHI, TOSHIO NARAHASHI Department of Pharmacology Northwestern University Medical School Chicago, Illinois 60611Search for more papers by this author First published: December 1986 https://doi.org/10.1111/j.1749-6632.1986.tb15563.xCitations: 36AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Narahashi, T. 1974. Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54: 813. 10.1152/physrev.1974.54.4.813 CASPubMedGoogle Scholar 2 Catterall, W. A. 1980. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol. 20: 15–43. 10.1146/annurev.pa.20.040180.000311 CASPubMedWeb of Science®Google Scholar 3 Kao, C. Y., & A. Nishiyama. 1965. Actions of saxitoxin on peripheral neuromuscular systems. J. Physiol. 180: 50–66. 10.1113/jphysiol.1965.sp007688 CASPubMedWeb of Science®Google Scholar 4 Hille, B. 1975. The receptor for tetrodotoxin and saxitoxin. Biophys. J. 15: 615–619. 10.1016/S0006-3495(75)85842-5 CASPubMedWeb of Science®Google Scholar 5 Woodbury, J. W. 1971. Eyring rate theory and model of the current-voltage relationship of ion channels in excitable membranes. In Chemical Dynamics: Papers in Honor of Henry Eyring. J. Hirschfelder, Ed.: 601–607. New York . Google Scholar 6 Woodhull, A. M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61: 687–708. 10.1085/jgp.61.6.687 CASPubMedWeb of Science®Google Scholar 7 Yamamoto, D., J. Z. Yeh & T. Narahashi. 1984. Voltage-dependent calcium block of normal and tetramethrin-modified simple sodium channels. Biophys. J. 45: 337–344. 10.1016/S0006-3495(84)84159-4 CASPubMedWeb of Science®Google Scholar 8 Reed, J. K. & M. A. Raftery. 1976. Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry 15: 944–953. 10.1021/bi00650a002 CASPubMedWeb of Science®Google Scholar 9 Spalding, B. C. 1980. Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle. J. Physiol. 305: 485–500. 10.1113/jphysiol.1980.sp013377 CASPubMedWeb of Science®Google Scholar 10 French, R. J., J. F. WORLEY Iii & B. P. Bean. 1984. Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers. Biophys. J. 45: 301–310. 10.1016/S0006-3495(84)84156-9 CASPubMedWeb of Science®Google Scholar 11 Moczydlowski, E, S. S. Garrer & C. Miller. 1984. Batrachotoxin activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+. J. Gen. Physiol. 84: 665–686. 10.1085/jgp.84.5.665 CASPubMedWeb of Science®Google Scholar 12 Moczydlowski, E., S. Hall, S. S. Garber, G. S. Strichartz & C. Miller. 1984. Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins: Effect of toxin charge. J. Gen. Physiol. 84: 687–704. 10.1085/jgp.84.5.687 CASPubMedWeb of Science®Google Scholar 13 Kao, C. Y. & S. E. Walker. 1982. Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon. J. Physiol. 323: 619–637. 10.1113/jphysiol.1982.sp014095 CASPubMedWeb of Science®Google Scholar 14 Ulbricht, W. & H. -H. Wagner. 1975. The influence of pH on equilibrium effects of tetrodotoxin on myelinated nerve fibres of Rana esculenta. J. Physiol. 252: 159–184. 10.1113/jphysiol.1975.sp011139 CASPubMedWeb of Science®Google Scholar 15 Gage, P. W., J. W. Moore & M. Westerfield. 1976. An octopus toxin, maculotoxin, selectively blocks sodium current in squid axons. J. Physiol. 259: 427–443. 10.1113/jphysiol.1976.sp011474 CASPubMedWeb of Science®Google Scholar 16 Sheumack, D. D., M. E. H. Howden, I. Spence & R. J. Quinn. 1978. Maculotoxin: A neurotoxin from the venom glands of the octopus Hapalochlaeua maculosa identified as tetrodotoxin. Science 199: 188–189. 10.1126/science.619451 CASGoogle Scholar 17 Cohen, C. J., B. P. Bean, T. J. Colatsky & R. W. Tsien. 1981. Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. J. Gen. Physiol. 78: 383–411. 10.1085/jgp.78.4.383 CASPubMedWeb of Science®Google Scholar 18 Lund, A. E. & T. Narahashi. 1981. Modification of sodium channel kinetics by the insecticide tetramethrin in crayfish giant axons. Neurotoxicol. 2: 213–229. CASPubMedWeb of Science®Google Scholar 19 Julian, F. J., J. W. Moore & D. E. Goldman. 1962. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J. Gen. Physiol. 45: 1195–1216. 10.1085/jgp.45.6.1195 CASPubMedWeb of Science®Google Scholar 20 Julian, F. J., J. W. Moore & D. E. Goldman. 1962. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J. Gen. Physiol. 45: 1217–1238. 10.1085/jgp.45.6.1217 CASPubMedWeb of Science®Google Scholar 21 Armstrong, C. M. & F. Bezanilla. 1974. Charge movement associated with the opening and closing of the activation gate of the Na channels. J. Gen. Physiol. 63: 533–552. 10.1085/jgp.63.5.533 CASPubMedWeb of Science®Google Scholar 22 Ulbricht, W., & H. -H. Wagner. 1975. The influence of pH on the rate of tetrodotoxin action on myelinated nerve fibres. J. Physiol. 252: 185–202. 10.1113/jphysiol.1975.sp011140 CASPubMedWeb of Science®Google Scholar 23 Cahalan, M. D. & W. Almers. 1979. Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin. Biophys. J. 27: 39–56. 10.1016/S0006-3495(79)85201-7 CASPubMedWeb of Science®Google Scholar Citing Literature Volume479, Issue1Tetrodotoxin, Saxitoxin, and the Molecular Biology of the Sodium ChannelDecember 1986Pages 84-95 ReferencesRelatedInformation

Referência(s)