125th Anniversary Review: Yeast Flocculation and Sedimentation in Brewing
2011; Wiley; Volume: 117; Issue: 4 Linguagem: Inglês
10.1002/j.2050-0416.2011.tb00495.x
ISSN2050-0416
AutoresVirve Vidgren, John Londesborough,
Tópico(s)Horticultural and Viticultural Research
ResumoJournal of the Institute of BrewingVolume 117, Issue 4 p. 475-487 Free Access 125th Anniversary Review: Yeast Flocculation and Sedimentation in Brewing Virve Vidgren, Corresponding Author Virve Vidgren VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT, Finland.E-mail: [email protected]Search for more papers by this authorJohn Londesborough, John Londesborough VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT, Finland.Search for more papers by this author Virve Vidgren, Corresponding Author Virve Vidgren VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT, Finland.E-mail: [email protected]Search for more papers by this authorJohn Londesborough, John Londesborough VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT, Finland.Search for more papers by this author First published: 16 May 2012 https://doi.org/10.1002/j.2050-0416.2011.tb00495.xCitations: 54 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL ABSTRACT Flocculation is prerequisite for bulk sedimentation of yeast during brewery fermentation. Although single yeast cells gradually sediment in green beer, this sedimentation rate is too slow without formation of large yeast flocs. The present review concerns the major determinants of yeast flocculation and sedimentation in brewery fermentations. Flocculation characteristics of yeast are strongly strain-dependent and largely defined by which FLO genes are functional in each strain. In addition to the genetic background, several environmental factors affect flocculation. These can be, somewhat arbitrarily, classified as physiological factors, such as the calcium availability, pH, temperature and ethanol and oxygen concentrations in the medium or physical factors, such as cell surface hydrophobicity, cell surface charge and the presence of appropriate hydrodynamic conditions for the formation of large flocs. Once yeast flocs are formed, their size, shape and density and the properties of the surrounding medium affect the rate at which the flocs sediment. Higher gravity worts usually result in green beers with higher viscosity and density, which both retard sedimentation. Moreover, environmental factors during yeast handling before fermentation, e.g., propagation, storage and cropping, influence the flocculation potential of yeast in subsequent fermentation. Premature yeast flocculation (PYF) and the role of PYF factors are discussed. In conclusion, some potential options available to adjust yeast flocculation are described. REFERENCES 1 Abramova, N., Sertil, O., Mehta, S. and Lowry, C. V., Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J. Bacteriol., 2001, 183, 2881– 2887. 2 Amory, D. E. and Rouxhet, P. G., Surface properties of Saccharomyces cerevisiae and Saccharomyces carlsbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta, 1988, 938, 61– 70. 3 Bayly, J. C., Douglas, L. M., Pretorius, I. S., Bauer, F. F. and Dranginis, A. M., Characteristics of Flo11-dependent flocculations in Saccharomyces cerevisiae. FEMS Yeast Res., 2005, 5, 1151– 1156. 4 Beavan, M. J., Belk, D. M., Stewart, G. G. and Rose, A. H., Changes in electrophoretic mobility and lytic enzyme activity associated with development of flocculating ability in Saccharomyces cerevisiae. Can. J. Microbiol., 1979, 25, 888– 895. 5 Bester, M. C., Pretorius, I. S. and Bauer, F. F., The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+-dependent flocculation by Flo8p and Mss11p. Curr. Genet., 2006, 49, 375– 383. 6 Bhattacharyya, M. K. and Lustig, A. J., Telomere dynamics in genome stability. Trends Biochem. Sci., 2006, 31, 114– 122. 7 Bony, M., Barre, P. and Blondin, B., Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: The availability of Flop determines the flocculation level. Yeast, 1998, 14, 25– 35. 8 Boulton, C. and Quain, D., Cell wall and flocculation. In: Brewing Yeast and Fermentation, 1st ed., Blackwell Science Ltd: Oxford, 2001, pp. 237– 257. 9 Claro, F. B., Rijsbrack, K. and Soares, E. V., Flocculation onset in Saccharomyces cerevisiae: Effect of ethanol, heat and osmotic stress. J. Appl. Microbiol., 2007, 102, 693– 700. 10 Cuncha, A. F., Missawa, S. K., Gomes, L. H., Reis, S. F. and Pereira, G. A. G., Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res., 2006, 6, 280– 287. 11 Damas-Buenrostro, L. C., Gracia-González, G. and Hernández-Luna, C. E., Detection of FLO genes in lager and wild yeast strains. J. Am. Soc. Brew. Chem., 2008, 66, 184– 187. 12 Dengis, P. B., Nélissen, L. R. and Rouxhet, P. G., Mechanism of yeast flocculation: Comparison of top- and bottom-fermenting strains. Appl. Environ. Microbiol., 1995, 61, 718– 728. 13 D'Hautcourt, O. and Smart, K. A., Measurement of brewing yeast flocculation. J. Am. Soc. Brew. Chem., 1999, 57, 123– 128. 14 Dietvorst, J. and Brandt, A., Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity brewing. Yeast, 2008, 25, 891– 901. 15 Dunn, B. and Sherlock, G., Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res., 2008, 18, 1610– 1623. 16 Ellis, T., Wang, X. and Collins, J. J., Diversity-based, model guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 2009, 27, 465– 471. 17 Fichtner, L., Schulze, F. and Braus, G. H., Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol. Micro-biol., 2007, 66, 1276– 1289. 18 Fidalgo, M., Barrales, R. R. and Jimenez, J., Coding repeat instability in the FLO11 gene of Saccharomyces yeast. Yeast, 2008, 25, 879– 889. 19 Gibson, B. R., Improvement of higher gravity brewery fermentation via wort enrichment and supplementation: 125th Anniversary Review. J. Inst. Brew., 2011, 117, 268– 284. 20 Govender, P., Domingo, J. L., Bester, M. C., Pretorius, I. S. and Bauer, F. F., Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 2008, 74, 6041– 6052. 21 Halme, A., Bumgarner, S., Styles, C. and Fink, G. R., Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 2004, 116, 405– 415. 22 Heggart, H. M., Margaritis, A., Pilkington, H., Stewart, R. J., Dowhanick, T. M. and Russell, I., Factors affecting yeast viability and vitality characteristics: A review. Tech. Q. Master Brew. Assoc. Am., 1999, 36, 383– 406. 23 Heine, F., Stahl, F., Sträuber, H., Wiacek, C., Benndorf, D., Repenning, C., Schmidt, F., Scheper, T., von Bergen, M., Harms, H. and Müller, S., Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling. Cytometry, 2009, 75A, 140– 147. 24 Helm, E., Nøhr, B. and Thorne, R. S. W., The measurement of yeast flocculence and its significance in brewing. Wallerstein Communications, 1953, 16, 315– 325. 25 Herrera, V. E. and Axcell, B. C., Induction of premature yeast flocculation by a polysaccharide fraction isolated from malt husk. J. Inst. Brew., 1991, 97, 359– 366. 26 Herrera, V. E. and Axcell, B. C., Studies on the binding between yeast and malt polysaccharide that induces heavy yeast flocculation. J. Inst. Brew., 1991, 97, 367– 373. 27 Hsu, J. W. C., Speers, R. A. and Paulson, A. T. Modeling of orthokinetic flocculation of Saccharomyces cerevisiae. Bio-phys. Chem., 2001, 94, 47– 58. 28 Ishida-Fujii, K., Goto, S., Sugiyama, H., Takagi, Y., Saiki, T. and Takagi M., Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants. J. Gen. Appl. Microbiol., 1998, 44, 347– 353. 29 Jarvis, P., Jefferson, B., Gregory, J. and Parsons, S. A., A review of floc strength and breakage. Water Res., 2005, 39, 3121– 3137. 30 Jibiki, M., Ishibiki, T., Yuuki, T. and Kagami, N., Application of polymerase chain reaction to determine the flocculation properties of brewer's lager yeast. J. Am. Soc. Brew. Chem., 2001, 59, 107– 110. 31 Jibiki, M., Sasaki, K., Kagami, N. and Kawatsura, K., Application of a newly developed method for estimating the premature yeast flocculation potential of malt samples. J. Am. Soc. Brew. Chem., 2006, 64, 79– 85. 32 Jin, Y.-L. and Speers, R. A., Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem., 2000, 58, 108– 116. 33 Jin, Y.-L., Ritcey, L. L. and Speers, R. A., Effect of cell surface hydrophobicity, charge and zymolectin density on the flocculation of Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem., 2001, 59, 1– 9. 34 Kaur, M., Assuring the microbial safety and quality of Australian malt and barley. PhD Thesis. 2010. University of Tasmania, Australia. 35 Kihn, J. C., Masy, C. L. and Mestdagh, M. M., Yeast flocculation: competition between non-specific repulsion and specific bonding in cell adhesion. Can. J. Microbiol., 1988, 34, 773– 778. 36 Kobayashi, O., Hayashi, N., Kuroki, R. and Sone, H., Region of Flo1 protein responsible for sugar recognition. J. Bacteriol., 1998, 180, 6503– 6510. 37 Kock, J. L. F., Venter, P., Smith, D. P., van Wyk, P. W. J., Botes, P. J., Coetzee, D. J., Pohl, C. H., Botha, A., Riedel, K.-H. and Nigam S., A novel oxylipin-associated 'ghosting' phenomenon in yeast flocculation. Antonie van Leeuwenhoek, 2000, 77, 401– 406. 38 Koizumi, H., Barley malt polysaccharides inducing premature yeast flocculation and their possible mechanism. J. Am. Soc. Brew. Chem., 2008, 66, 137– 142. 39 Koizumi, H., Kato, Y. and Ogawa T., Purification and characterization of a malt polysaccharide inducing premature yeast flocculation. Workshop III: Malting barley variety development and evaluation systems. Proc. World Brew. Congr. 2004, Workshop III, CD-ROM. 40 Koizumi, H. and Ogawa T., Rapid and sensitive method to measure premature yeast flocculation activity in malt. J. Am. Soc. Brew. Chem., 2005, 63, 147– 150. 41 Lake, J. C. and Speers R. A., A discussion of malt-induced premature yeast flocculation. Tech. Q. Master Brew. Assoc. Am., 2008, 45, 253– 262. 42 Lawrence, S. J. and Smart K. A., Impact of CO2-induced anaerobiosis on the assessment of brewing yeast flocculation. J. Am. Soc. Brew. Chem., 2007, 65, 208– 213. 43 Lawrence, R. J., Gibson, B. R. and Smart, K. A., Expression of the cell wall mannoprotein genes CWP and DAN during industrial-scale lager fermentations. J. Am. Soc. Brew. Chem., 2009, 67, 58– 62. 44 Libkind, D., Hittinger, C. T., Valério, E., Gonçalves, C., Dover, J., Johnston, M., Gonçalves, P. and Sampaio, J. P., Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. USA, 2011, 108, 14539– 14544. 45 Liu, H., Styles, C. A. and Fink, G. R., Saccharomyces cerevisiae S288C has a mutation in FLO8 a gene required for filamentous growth. Genetics, 1996, 144, 967– 978. 46 Liu, N., Wang, D., Wang, Z. Y., He, X. P. and Zhang B., Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Res., 2007, 7, 1362– 1370. 47 Liu, N., Wang, D.-L., Wang, Z.-Y., He, X.-P. and Zhang B.-R., Deletion of tandem repeats causes flocculation phenotype conversion from Flo1 to NewFlo in Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol., 2009, 16, 137– 145. 48 Loney, E. R., Inglis, P. W., Sharp, S., Pryde, F. E., Kent, N. A., Mellor, J. and Louis, E. J., Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. Epigenetics Chromatin, 2009, 2, 18. 49 Masy, C. L., Henquinet, A. and Mestdagh M. M., Flocculation of Saccharomyces cerevisiae: Inhibition by sugars. Can. J. Microbiol., 1992, 12, 1298– 1306. 50 Mercier-Bonin, M., Oazzani, K., Schmitz, P. and Lorthois, S., Study of bioadhesion on a flat plate with a yeast/glass model system. J. Colloid Interface Sc., 2004, 271, 342– 350. 51 Miki, B. L. A., Poon, H., James, A. P. and Seligy, V. L., Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J. Bacteriol., 1982, 150, 878– 889. 52 Miller, T., Krogan, N. J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., Greenblatt, J. K. and Shilatifard, A., COMPASS: A complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. USA, 2001, 98, 12902– 12907. 53 Nakao, Y., Kanamori, T., Itoh, T., Kodama, Y., Rainieri, S., Nakamura, N., Shimonaga, T., Hattori, M. and Ashikari, T., Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res., 2009, 16, 115– 129. 54 Novak, J., Basarova, G., Teixeira, J. A. and Vicente A. A., Monitoring of brewing yeast propagation under aerobic and anaerobic conditions employing flow cytometry. J. Inst. Brew., 2007, 113, 249– 255. 55 Ogata, T., Izumikawa, M., Kohno, K. and Shibata K., 2008. Chromosomal location of Lg-FLO1 in bottom-fermenting yeast and the FLO5 locus of industrial yeast. J. Appl. Micro-biol., 2008, 105, 1186– 1198. 56 Peng, X., Sun, J., Iserentant, D., Michiels, D. and Verachtert, H., Flocculation and coflocculation of bacteria by yeasts. Appl. Microbiol. Biotechnol., 2001, 55, 777– 781. 57 Poreda, A., Antkiewicz, P., Tuszyński, T. and Makarewicz, M., Accumulation and release of metal ions by brewer's yeast during successive fermentations. J. Inst. Brew., 2009, 115, 78– 83. 58 Powell, C. D., Quain, D. E. and Smart, K. A., The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res., 2003, 3, 149– 157. 59 Powell, C. D., Quain, D. E. and Smart, K. A., 2004. The impact of sedimentation on cone yeast heterogeneity. J. Am. Soc. Brew. Chem., 2004, 62, 8– 17. 60 Powell, C. D. and Diacetis, A. N., Long term serial repitching and the genetic and phenotypic stability of brewer's yeast. J. Inst. Brew., 2007, 113, 67– 74. 61 Pryde, F. E. and Louis, E. J., Limitations of silencing at native yeast telomeres. EMBO J., 1999, 9, 2538– 2550. 62 Rees, E. M. R. and Stewart, G. G., Strain specific response of brewer's yeast strains to zinc concentrations in conventional and high gravity worts. J. Inst. Brew., 1998, 104, 221– 228. 63 Rhymes, M. R. and Smart, K. A., The relationship between flocculation and cell surface physical properties in a Flo1 ale yeast. In: Brewing Yeast Fermentation Performance. K. A. Smart Ed., Blackwell Science: Oxford, 2000. 64 Rhymes, M. R. and Smart, K. A., Effect of storage conditions on the flocculation and cell wall characteristics of ale brewing yeast strains. J. Am. Soc. Brew. Chem., 2001, 59, 32– 38. 65 Robinson, A. and Harrison S. T. L., Effect on aeration in propagation on surface properties of brewer's yeast. Focus on Biotechnol., 2002, 1, 89– 99. 66 Sampermans, S., Mortier, J. and Soares, E. V., 2005. Flocculation onset in Saccharomyces cerevisiae: The role of nutrients. J. Appl. Microbiol., 2005, 98, 525– 531. 67 Sato, M., Watari, J. and Shinotsuka, K., Genetic instability in flocculation of bottom-fermenting yeast. J. Am. Soc. Brew. Chem., 2001, 59, 130– 134. 68 Shen, Y., Berger, S. J. and Smith, R. D., Capillary isoelectric focusing of yeast cells. Anal. Chem., 2000, 72, 4603– 4607. 69 Sieiro, C., Reboredo, N. M. and Villa, T. G., Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae. J. Ind. Microbiol., 1994, 14, 461– 466. 70 Smart, K. A. and Whisker, S., 1996. Effect of serial repitching on the fermentation properties and conditions of brewing yeast. J. Am. Soc. Brew. Chem., 1996, 54, 41– 44. 71 Smit, G., Straver, M. H., Lugtenberg, B. J. J. and Kijne, J. W., Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl. Environ. Microbiol., 1992, 58, 3709– 3714. 72 Smukalla, S., Caldar, M., Pochet, N., Beauvais, A., Guadagnini, S., Yan, C., Vinces, M. C., Jansen, A., Prevost, M. C., Latgé, J.-P., Fink, G. R., Foster, R. and Verstepen, K. J., FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell, 2008, 135, 726– 737. 73 Soares, E. V., Flocculation in Saccharomyces cerevisiae: a review. J. Appl. Microbiol., 2010, 110, 1– 18. 74 Soares, E. V. and Mota, M., 1996. Flocculation onset, growth phase and genealogical age in Saccharomyces cerevisiae. Can. J. Microbiol., 1996, 42, 539– 547. 75 Soares, E. V. and Duarte, A. A., Addition of nutrients induce a fast loss of flocculation in starved cells of Saccharomyces cerevisiae. Biotechnol. Lett., 2002, 24, 1957– 1960. 76 A. Speers, (ed.) Yeast Flocculation, Vitality, and Viability. Proc. 2nd International Brewers Symposium, 2012, Master Brewers Association of the Americas: MN, USA. 77 Speers, R. A., Tung, M. A., Durances, T. D. and Stewart, G. G., Biochemical aspects of yeast flocculation and its measurement: A review. J. Inst. Brew., 1992, 98, 293– 300. 78 Speers, R. A., Wan, Y.-Q., Jin, Y.-L. and Stewart, R., Effect of fermentation parameters and cell wall properties on yeast flocculation. J. Inst. Brew., 2006, 112, 246– 254. 79 Stewart, G. G., The Horace Brown medal lecture: Forty years of brewing research. J. Inst. Brew., 2009, 115, 3– 29. 80 Stratford, M., Yeast flocculation: calcium specificity. Yeast, 1989, 5, 487– 496. 81 Stratford, M., 1992. Yeast flocculation: A new perspective. Adv. Microbiol. Physiol., 1992, 33, 2– 71. 82 Stratford, M., Yeast flocculation: flocculation onset and receptor availability. Yeast, 1993, 9, 85– 94. 83 Stratford, M., Induction of flocculation in brewing yeasts by change in pH value. FEMS Microbiol. Lett., 1995, 136, 13– 18. 84 Stratford, M., Coleman, H. P. and Keenan, M. H. J., Yeast flocculation: A dynamic equilibrium. Yeast, 1988, 4, 199– 208. 85 Stratford, M. and Keenan, M. H. J., Yeast flocculation: quantification. Yeast, 1988, 4, 107– 115. 86 Stratford, M. and Assinder, S., Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast, 1991, 7, 559– 574. 87 Stratford, M. and Carter, A. T., Yeast flocculation: lectin synthesis and activation. Yeast, 1993, 9, 371– 378. 88 Strauss, C. J., Kock, J. L. F., van Wyk, P. W. J., Lodolo, E. J., Pohl, C. H. and Botes, P. J., Bioactive oxylipins in Saccharomyces cerevisiae. J. Inst. Brew., 2005, 111, 304– 308. 89 Strauss, C. J., van Wyk, P. W. J., Lodolo, E. J., Botes, P. J., Pohl, C. H., Nigam, S. and Kock, J. L. F., Oxylipin associated co-flocculation in yeasts. J. Inst. Brew., 2006, 112, 66– 71. 90 Strauss, C. J., van Wyk, P. W. J., Lodolo, E. J., Botes, P. J., Pohl, C. H., Nigam, S. and Kock, J. L. F., Mitochondrial associated yeast flocculation — the effect of acetylsalicylic acid. J. Inst. Brew., 2007, 113, 42– 47. 91 Straver, M. H., Aar, P. C. V. D., Smit, G. and Kijne, J. W., Determinants of flocculence of brewer's yeast during fermentation in wort. Yeast, 1993, 9, 527– 532. 92 Suihko, M.-L., Vilpola, A. and Linko, M., Pitching rate in high gravity brewing. J. Inst. Brew., 1993, 99, 341– 346. 93 Taylor, N. W. and Orton, W. L., Aromatic compounds and sugars in flocculation of Saccharomyces cerevisiae. J. Inst. Brew., 1978, 84, 113– 114. 94 Teixeira, J. M., Teixeira, J. A., Mota, M., Manuela, M., Guerra, B., Cruz, Machado J. M. and Sá Almeida, A. M., The influence of the cell wall composition of a brewer's flocculent lager yeast on sedimentation during successive industrial fermentations. Proc. Eur. Brew. Conv., Congr., Lisbon, IRL Press: London, 1991, 23, pp. 241– 248. 95 Teunissen, A. W. R. H. and Steensma, H. Y., Review: The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast, 1995, 11, 1001– 1013. 96 van Hamersveld, E. H., van der Lans, R. G. J. M. and Luyben, K. C. A. M., Quantification of brewer's yeast flocculation in a stirred tank: effect of physical parameters on flocculation. Biotechnol. Bioeng., 1997, 56, 190– 200. 97 van Holle, A., Machado, M. D. and Soares, E. V., Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity. Appl. Microbiol. Biotechnol., 2011 Aug 4. [Epub ahead of print] DOI: 10.1007/s00253–011–3502–1. 98 van Iersel, M. F. M., Meersman, E., Arntz, M., Rombouts, F. M. and Abee, T., Effect of environmental conditions on flocculation and immobilisation of brewer's yeast during production of alcohol-free beer. J. Inst. Brew., 1998, 104, 131– 136. 99 van Mulders, S. E., Ghequire, M., Daenen, L., Verbelen, P. J., Verstrepen, K. J. and Delvaux, F. R., Flocculation gene variability in industrial brewer's yeast strains. Appl. Microbiol. Biotechnol., 2010, 88, 1321– 31. 100 van Nierop, S. N. E., Cameron-Clarke, A. and Axcell, B. C., Enzymatic generation of factors from malt responsible for premature yeast flocculation. J. Am. Soc. Brew. Chem., 2004, 62, 108– 116. 101 Veelders, M., Brückner, S., Ott, D., Unverzagt, C., Mösch, H. U. and Essen, L. O., Structural basis of flocculin-mediated social behavior in yeast. Proc. Natl. Acad. Sci. USA, 2010, 107, 22511– 22516. 102 Verstrepen, K. J., Derdelinckx, G. and Delvaux F. R., Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem., 2001, 59, 69– 76. 103 Verstrepen, K. J., Derdelinckx, G., Verachtert, H. and Delvaux, F. R., Yeast flocculation: what brewers should know. Appl. Microbiol. Biotechnol., 2003, 61, 197– 205. 104 Verstrepen, K. J., Reynolds, T. B. and Fink, G. R., Origins of variation in the fungal cell surface. Nat. Rev. Microbiol., 2004, 2, 533– 540. 105 Verstrepen, K. J., Jansen, A., Lewitter, F. and Fink, G. R., Intragenic tandem repeats generate functional variability. Nat. Genet., 2005, 37, 986– 990. 106 Verstrepen, K. J. and Klis, F. M., Flocculation, adhesion and biofilm formation in yeast. Mol. Microbiol., 2006, 60, 5– 15. 107 Verstrepen, K. J. and Fink, G. R., Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu. Rev. Genet., 2009, 43, 1– 24. 108 Wang, J. and Chen, C., Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Advan., 2006, 24, 427– 451. 109 Wang, D., Wang, Z., Liu, N., He, X. and Zheng, B., Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnol. Lett., 2008, 30, 2013– 2018. 110 Watari, J., Takata, Y., Ogawa, M., Nishikawa, N. and Kamimura, M., Molecular cloning of flocculation gene in Saccharomyces cerevisiae. Agric. Biol. Chem., 1989, 53, 901– 903. 111 Watari, J., Nomura, M., Sahara, H., Koshino, S. and Keränen, S., Construction of flocculent brewer's yeast by chromosomal integration of the yeast flocculation gene FLO1. J. Inst. Brew., 1994, 100, 73– 77. 112 Watari, J., Sato, M., Ogawa, M. and Shinotsuga, K., Genetic and physiological instability of brewing yeast. Symposium on yeast physiology — A new era of opportunity. Eur. Brew. Conv. Monogr., 1999, 28, pp. 148– 160. 113 Wightman, P., Quain, D. E. and Meaden, P. G., Analysis of production brewing strains of yeast by DNA fingerprinting. Lett. Appl. Microbiol., 1996, 22, 90– 94. 114 Wilcocks, K. L. and Smart, K. A., The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing. FEMS Microbiol. Lett., 1995, 134, 293– 297. 115 Wilkie, D. and Evans, I., Mitochondria and the yeast cell surface: Implications for carcinogenesis. Trends Biochem. Sci., 1982, 7, 147– 151. 116 Zhao, X. Q. and Bai, F. W., Yeast flocculation: New story in fuel ethanol production. Biotechnol. Adv., 2009, 27, 849– 856. 117 Zhao, X. Q., Xue, C., Ge, X. M., Yuan, W. J., Wang, J. Y. and Bai, F. W., Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol., 2009, 139, 55– 60. Citing Literature Volume117, Issue42011Pages 475-487 This article also appears in:125th Anniversary Reviews ReferencesRelatedInformation
Referência(s)