Modulation of adipose tissue lipolysis and body weight by high-density lipoproteins in mice
2014; Springer Nature; Volume: 4; Issue: 2 Linguagem: Inglês
10.1038/nutd.2014.4
ISSN2044-4052
AutoresWei Hao, Michelle M. Averill, Timothy S. McMillen, Frank Dastvan, Prasenjit Mitra, Savitha Subramanian, Chongren Tang, Alan Chait, Renee Leboeuf,
Tópico(s)Metabolism, Diabetes, and Cancer
ResumoObesity is associated with reduced levels of circulating high-density lipoproteins (HDLs) and its major protein, apolipoprotein (apo) A-I. As a result of the role of HDL and apoA-I in cellular lipid transport, low HDL and apoA-I may contribute directly to establishing or maintaining the obese condition.To test this, male C57BL/6 wild-type (WT), apoA-I deficient (apoA-I(-/-)) and apoA-I transgenic (apoA-I(tg/tg)) mice were fed obesogenic diets (ODs) and monitored for several clinical parameters. We also performed cell culture studies.ApoA-I(-/-) mice gained significantly more body weight and body fat than WT mice over 20 weeks despite their reduced food intake. During a caloric restriction regime imposed on OD-fed mice, apoA-I deficiency significantly inhibited the loss of body fat as compared with WT mice. Reduced body fat loss with caloric restriction in apoA-I(-/-) mice was associated with blunted stimulated adipose tissue lipolysis as verified by decreased levels of phosphorylated hormone-sensitive lipase (p-HSL) and lipolytic enzyme mRNA. In contrast to apoA-I(-/-) mice, apoA-I(tg/tg) mice gained relatively less weight than WT mice, consistent with other reports. ApoA-I(tg/tg) mice showed increased adipose tissue lipolysis, verified by increased levels of p-HSL and lipolytic enzyme mRNA. In cell culture studies, HDL and apoA-I specifically increased catecholamine-induced lipolysis possibly through modulating the adipocyte plasma membrane cholesterol content.Thus, apoA-I and HDL contribute to modulating body fat content by controlling the extent of lipolysis. ApoA-I and HDL are key components of lipid metabolism in adipose tissue and constitute new therapeutic targets in obesity.
Referência(s)