Effective diffusion length of minority carriers in polycrystalline silicon

1984; Wiley; Volume: 84; Issue: 1 Linguagem: Inglês

10.1002/pssa.2210840139

ISSN

1521-396X

Autores

D. P. Jwhi, Ruchi Srivastava,

Tópico(s)

Silicon Nanostructures and Photoluminescence

Resumo

physica status solidi (a)Volume 84, Issue 1 p. 311-317 Original Paper Effective diffusion length of minority carriers in polycrystalline silicon D. P. Jwhi, D. P. Jwhi Department of Physics. D. B. S. College, Dehra Dun Search for more papers by this authorR. S. Srivastava, R. S. Srivastava Department of Physics. D. B. S. College, Dehra Dun Search for more papers by this author D. P. Jwhi, D. P. Jwhi Department of Physics. D. B. S. College, Dehra Dun Search for more papers by this authorR. S. Srivastava, R. S. Srivastava Department of Physics. D. B. S. College, Dehra Dun Search for more papers by this author First published: 16 July 1984 https://doi.org/10.1002/pssa.2210840139Citations: 7 142/4 Dharampur, Dehra Dun 2480 01, India. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten A new relation is presented for the effective minority-carrier diffusion length in polycrystalline silicon under solar illumination. It is found that effective diffusion length is controlled by the grain size d and the space-charge potential barrier height at the grain boundary. The dependence of effective minority-carrier diffusion length and space-charge potential barrier height on the grain size is also investigated theoretically. The theory predicts that, for large grain sizes, the effective diffusion length is approximately proportional to d1/2, while for small grain sizes it is proportional to d. The available experimental data are found to be in good agreement with the theoretical predictions. Abstractde Es wird eine neue Beziehung angegeben für die effektive Minoritätsträger-Diffusionslänge in polykristallinem Silizium unter Sonnenbestrahlung. Es wird gefunden, daß die effektive Diffusionslänge durch die Korngröße d und die Höhe der Raumladungspotentialbarriere an den Korngrenzen gesteuert wird. Die Abhängigkeit der effektiven Minoritätsladungsträgerdiffusionslänge und denr Höhe der Raumladungspotentialbarriere von der Korngröße wird auch theoretisch analysiert. Die Theorie ergibt, daß für große Kornabmessungen, die effektive Diffusionslänge näherungsweise zu d1/2 proportional ist, während sie für geringe Korngrößen proportional zu d ist. Es wird gefunden, daß vorhandene experimentelle Werte in guter Übereinstimmnng mit den theoretischen Vorhersagen sind. References 1 T. L. Chu, Proc. 11th IEEE Photovoltaic Specialists Conf., Scottsdale (Ariz.) 1975, IEEE, New York 1975 (p. 303). Web of Science®Google Scholar 2 S. I. Soclof and P. A. Iles, Proc. 11th IEEE Photovoltaic Specialists Conf., Scottsdale (Ariz.) 1975, IEEE, New York (p. 56). Google Scholar 3 H. Fischer and W. Pschunder, Proc. 12th IEEE Photovoltaic Specialists Conf., Baton Rouge (LA) 1976, IEEE, New York 1976 (p. 25). Google Scholar 4 C. Feldman, N. A. Blum, H. K. Charles, Jr., and P. G. Satkiewicz, J. electron. Mater. 7 309 (1978). 10.1007/BF02655680 CASWeb of Science®Google Scholar 5 H. C. Card and E. Yang, IEEE Trans. Electron Devices 24, 397 (1977). 10.1109/T-ED.1977.18747 CASWeb of Science®Google Scholar 6 K. M. Koliwad and T. Daud, Proc. 14th IEEE Photovoltaic Specialists Conf., California 1980, IEEE, New York 1980 (p. 1204). Google Scholar 7 A. K. Ghosh, C. Fishman, and T. Fenu, J. appl. Phys. 51, 446 (1980). 10.1063/1.327342 CASWeb of Science®Google Scholar 8 J. G. Fossum and F. A. Lindholm, IEEE Trans. Electron Devices 27, 692 (1980). 10.1109/T-ED.1980.19924 Web of Science®Google Scholar 9 C. Lanza and H. J. Hovel, IEEE Trans. Electron Devices 27, 2085 (1980). 10.1109/T-ED.1980.20153 Web of Science®Google Scholar 10 K. Sen, R. S. Srivastava, D. P. Joshi, and V. K. Goyal, phys. stat. sol. (a) 75, 657 (1983). 10.1002/pssa.2210750241 CASWeb of Science®Google Scholar 11 H. C. Card, J. appl. Phys. 52, 3671 (1981). 10.1063/1.329104 CASWeb of Science®Google Scholar 12 C. H. Seager, J. appl. Phys. 52, 3960 (1981). 10.1063/1.329202 CASWeb of Science®Google Scholar 13 C. H. Seager, Appl. Phys. Letters 41, 855 (1984). 10.1063/1.93675 Web of Science®Google Scholar 14 J. I. Fossum arid R. Sundaresan, IEEE Trans. Eletron Devices 29, 1185 (1982). 10.1109/T-ED.1982.20855 Web of Science®Google Scholar 15 J W. Shockley, Electrons and Holes in Semiconductors, Wiley, New York 1959. Google Scholar 16 D. P. Joshi and K. Sen, phys. stat. sol. (a) 75, 311 (1983). 10.1002/pssa.2210750135 CASWeb of Science®Google Scholar 17 P. Panayotatoy and H. C. Card, IEEE Trans. Electron Devices, Letters 1, 463 (1980). Google Scholar 18 A. K. Ghosh, T. Feng, and P. Maruska, Solar Cells 1, 421 (1979/80). 10.1016/0379-6787(80)90065-4 Web of Science®Google Scholar 19 S. Kumari, N. K. Arora, and G. C. Jain, Solar Energy Mater. 5, 383 (1981). 10.1016/0165-1633(81)90073-3 CASWeb of Science®Google Scholar 20 N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Meindl, IEEE Trans. Electron Devices 28, 818 (1981). 10.1109/T-ED.1981.20437 CASPubMedGoogle Scholar 21 C. H. Seager and T. G. Castner, J. appl. Phys. 49, 3879 (1978). 10.1063/1.325394 CASWeb of Science®Google Scholar 22 D. P. Joshi and R. S. Srivatsava, IEEE Trans. Electron Devices, in the press. Google Scholar Citing Literature Volume84, Issue116 July 1984Pages 311-317 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX