Artigo Acesso aberto Revisado por pares

Exponential dichotomies and Fredholm operators

1988; American Mathematical Society; Volume: 104; Issue: 1 Linguagem: Inglês

10.1090/s0002-9939-1988-0958058-1

ISSN

1088-6826

Autores

Kenneth J. Palmer,

Tópico(s)

Holomorphic and Operator Theory

Resumo

It is shown that if the operator ( L x ) ( t ) = x ˙ ( t ) − A ( t ) x ( t ) \left ( {Lx} \right )\left ( t \right ) = \dot x\left ( t \right ) - A\left ( t \right )x\left ( t \right ) is semi-Fredholm, then the differential equation x ˙ = A ( t ) x \dot x = A\left ( t \right )x has an exponential dichotomy on both [ 0 , ∞ ) [0,\infty ) and ( − , 0 ] ( - \infty ,0] . This gives a converse to an earlier result.

Referência(s)