Artigo Revisado por pares

Computational Methods for Determining Lower Bounds for Eigenvalues of Operators in Hilbert Spaces

1966; Society for Industrial and Applied Mathematics; Volume: 8; Issue: 4 Linguagem: Inglês

10.1137/1008101

ISSN

1095-7200

Autores

David W. Fox, Werner C. Rheinboldt,

Tópico(s)

Numerical methods in inverse problems

Resumo

Next article Computational Methods for Determining Lower Bounds for Eigenvalues of Operators in Hilbert SpacesDavid W. Fox and Werner C. RheinboldtDavid W. Fox and Werner C. Rheinboldthttps://doi.org/10.1137/1008101PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1A] N. I. Akhiezer and , I. M. Glazman, Theory of linear operators in Hilbert space. Vol. I, Translated from the Russian by Merlynd Nestell, Frederick Ungar Publishing Co., New York, 1961xi+147 MR0264420 0098.30702 Google Scholar[1B] N. I. Akhiezer and , I. M. Glazman, Theory of linear operators in Hilbert space. Vol. II, Translated from the Russian by Merlynd Nestell, Frederick Ungar Publishing Co., New York, 1963v+218 MR0264421 Google Scholar[2A] N. Aronszajn, Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues. I. Operators in a Hilbert space, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 474–480 MR0027955 0031.40601 CrossrefISIGoogle Scholar[2B] N. Aronszajn, The Rayleigh-Ritz and the Weinstein methods for approximation of eigenvalues. II. Differential operators, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 594–601 MR0027956 0038.24803 CrossrefISIGoogle Scholar[3] N. Aronszajn, Approximation methods for eigenvalues of completely continuous symmetric operators, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, 179–202 MR0044736 0067.09101 Google Scholar[4] N. Aronszajn and , W. F. Donoghue, Variational approximation methods applied to eigenvalues of a clamped rectangular plate, Part I, Auxiliary problems, Tech. Report, 12, Department of Mathematics, University of Kansas, Lawrence, 1954, Studies in Eigenvalue Problems Google Scholar[5] Nathan Aronszajn and , Alexander Weinstein, Existence, convergence and equivalence in the unified theory of eigenvalues of plates and membranes, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 188–191 MR0004679 0061.24010 CrossrefGoogle Scholar[6] N. W. Bazley, Lower bounds for eigenvalues with application to the helium atom, Proc. Nat. Acad. Sci. U. S. A., 45 (1959), 850–853 0087.43004 CrossrefISIGoogle Scholar[7] Norman W. Bazley, Lower bounds for eigenvalues with application to the helium atom, Phys. Rev. (2), 120 (1960), 144–149 10.1103/PhysRev.120.144 MR0116989 0093.44501 CrossrefISIGoogle Scholar[8] Norman W. Bazley, Lower bounds for eigenvalues, J. Math. Mech., 10 (1961), 289–307 MR0128612 0106.31802 ISIGoogle Scholar[9] N. W. Bazley, , W. Borsch-Supan and , D. W. Fox, Lower bounds for eigenvalues of a quadratic form relative to a positive quadratic form, Tech. Memo, TG-657, Applied Physics Laboratory, The Johns Hopkins University, 1965 Google Scholar[10] Norman W. Bazley and , David W. Fox, Truncations in the method of intermediate problems for lower bounds to eigenvalues, J. Res. Nat. Bur. Standards Sect. B, 65B (1961), 105–111 MR0142897 0108.11303 CrossrefISIGoogle Scholar[11] Norman W. Bazley and , David W. Fox, Lower bounds for eigenvalues of Schrödinger's equation, Phys. Rev. (2), 124 (1961), 483–492 10.1103/PhysRev.124.483 MR0142898 0121.08501 CrossrefISIGoogle Scholar[12] Norman W. Bazley and , David W. Fox, Lower bounds to eigenvalues using operator decompositions of the form $B\sp{\ast} B$, Arch. Rational Mech. Anal., 10 (1962), 352–360 10.1007/BF00281201 MR0148216 0104.33702 CrossrefISIGoogle Scholar[13] Norman W. Bazley and , David W. Fox, Error bounds for eigenvectors of self-adjoint operators, J. Res. Nat. Bur. Standards Sect. B, 66B (1962), 1–4 MR0139265 0106.09101 CrossrefGoogle Scholar[14] Norman W. Bazley and , David W. Fox, A procedure for estimating eigenvalues, J. Mathematical Phys., 3 (1962), 469–471 10.1063/1.1724246 MR0144454 0108.11304 CrossrefISIGoogle Scholar[15] Norman W. Bazley and , David W. Fox, Error bounds for expectation values, Rev. Modern Phys., 35 (1963), 712–716 10.1103/RevModPhys.35.712 MR0160452 0132.43402 CrossrefGoogle Scholar[16] Norman W. Bazley and , David W. Fox, Lower bounds for energy levels of molecular systems, J. Mathematical Phys., 4 (1963), 1147–1153 10.1063/1.1704045 MR0165238 CrossrefISIGoogle Scholar[17] Normann W. Bazley and , David W. Fox, Improvement of bounds to eigenvalues of operators of the form $T\sp{\ast} T$, J. Res. Nat. Bur. Standards Sect. B, 68B (1964), 173–183 MR0179923 0163.38902 CrossrefGoogle Scholar[18] Norman W. Bazley and , David W. Fox, Error bounds for approximations to expectation values of unbounded operators, J. Mathematical Phys., 7 (1966), 413–416 10.1063/1.1704947 MR0202006 0158.45504 CrossrefISIGoogle Scholar[19] Norman W. Bazley and , David W. Fox, Comparison operators for lower bounds to eigenvalues, J. Reine Angew. Math., 223 (1966), 142–149 MR0203925 0144.17603 ISIGoogle Scholar[20] N. W. Bazley and , D. W. Fox, Methods for lower bounds to frequencies of continuous elastic systems, Z. Angew. Math. Phys., to appear Google Scholar[21] N. W. Bazley and , D. W. Fox, On a recent paper of Gay, Tech. Memo., TG-743, Applied Physics Laboratory, The Johns Hopkins University, 1965 Google Scholar[22] N. W. Bazley, , D. W. Fox and , J. T. Stadter, Upper and lower bounds for the frequencies of rectangular clamped plates, Tech. Memo., TG-626, Applied Physics Laboratory, The Johns Hopkins University, 1965 Google Scholar[23] N. W. Bazley, , D. W. Fox and , J. T. Stadter, Upper and lower bounds for the frequencies of rectangular cantilever plates, Tech. Memo., TG-705, Applied Physics Laboratory, The Johns Hopkins University, 1965 Google Scholar[24] N. W. Bazley, , D. W. Fox and , J. T. Stadter, Upper and lower bounds for the frequencies of rectangular free plates, Tech. Memo., TG-707, Applied Physics Laboratory, The Johns Hopkins University, 1965 Google Scholar[25] Earl A. Coddington and , Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955xii+429 MR0069338 0064.33002 Google Scholar[26] R. Courant and , D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953xv+561 MR0065391 0053.02805 Google Scholar[27] Nelson Dunford and , Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963ix+pp. 859–1923+7 MR0188745 0128.34803 Google Scholar[28] E. Fischer, Über quadratische Formen mit reellen Koeffizienten, Monatsh. Math. Physik, 16 (1905), 234–249 10.1007/BF01693781 CrossrefGoogle Scholar[29] S. H. Gould, Variational methods for eigenvalue problems. An introduction to the methods of Rayleigh, Ritz, Weinstein, and Aronszajn, Mathematical Expositions No. 10, University of Toronto Press, Toronto, 1957xiv+179 MR0087019 0077.09603 Google Scholar[30] Tosio Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan, 4 (1949), 334–339 10.1143/JPSJ.4.334 MR0038738 CrossrefGoogle Scholar[31] Tosio Kato, On some approximate methods concerning the operators $T\sp *T$, Math. Ann., 126 (1953), 253–262 10.1007/BF01343163 MR0058131 0051.09203 CrossrefGoogle Scholar[32A] N. Joachim Lehmann, Beiträge zur numerischen Lösung linearer Eigenwertprobleme. I, Z. Angew. Math. Mech., 29 (1949), 341–356 MR0034511 CrossrefGoogle Scholar[32B] N. Joachim Lehmann, Beiträge zur numerischen Lösung linearer Eigenwertprobleme. II, Z. Angew. Math. Mech., 30 (1950), 1–16 MR0034512 0034.37901 CrossrefGoogle Scholar[33] Hans J. Maehly, Ein neues Variationsverfahren zur genäherten Berechnung der Eigenwerte hermitescher Operatoren, Helvetica Phys. Acta, 25 (1952), 547–568 MR0065267 0047.11602 ISIGoogle Scholar[34] M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960xii+394 MR0216049 0092.07902 Google Scholar[35] H. Poincare, Sur les Equations aux Derivees Partielles de la Physique Mathematique, Amer. J. Math., 12 (1890), 211–294 MR1505534 CrossrefGoogle Scholar[36] Frigyes Riesz and , Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955xii+468 MR0071727 0070.10902 Google Scholar[37] J. T. Stadter, Bounds to eigenvalues of rhombical membranes, SIAM J. Appl. Math., to appear Google Scholar[38] J. T. Stadter, Extension of an eigenvalue estimation method of D. H. Weinstein, Tech. Memo., TG-803, Applied Physics Laboratory, The Johns Hopkins University, 1966 Google Scholar[39] M. H. Stone, Linear Transformations in Hilbert Space and Their Applications to Analysis, Vol. 15, American Mathematical Society Colloquium Publications, New York, 1932 0005.40003 CrossrefGoogle Scholar[40] G. Temple, The computation of characteristic numbers and characteristic functions, Proc. London Math. Soc., 29 (1928), 257–280 CrossrefGoogle Scholar[41] H. F. Weinberger, A theory of lower bounds for eigenvalues, Tech. Note, BN-183, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, 1959 Google Scholar[42] H. F. Weinberger, Error bounds in the Rayleigh-Ritz approximation of eigenvectors, J. Res. Nat. Bur. Standards Sect. B, 64B (1960), 217–225 MR0129121 0092.32602 CrossrefGoogle Scholar[43] A. Weinstein, Sur la stabilité des plaques encastrées, C. R. Acad. Sei. Paris, 200 (1935), 107–109 Google Scholar[44] A. Weinstein, Étude des spectres des équations aux dérivées partielles, Mémor. Sci. Math., Fase. 88, Gauthier-Villars, Paris, 1937 0018.21601 Google Scholar[45] A. Weinstein, A necessary and sufficient condition in the maximum-minimum theory of eigenvaluesStudies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, 429–434, (Pólya Anniversary Volume) MR0149657 0114.31603 Google Scholar[46] Alessandro Weinstein, La teoria di massimo-minimo degli autovalori ed il metodo dei problemi intermedi, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, 596–609 MR0196278 Google Scholar[47] Alexander Weinstein, The intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech., 12 (1963), 235–245 MR0155083 0119.11801 ISIGoogle Scholar[48] Alexander Weinstein, Some applications of the new maximum-minimum theory of eigenvalues, J. Math. Anal. Appl., 12 (1965), 58–64 10.1016/0022-247X(65)90053-3 MR0182800 0142.08403 CrossrefISIGoogle Scholar[49] D. H. Weinstein, Modified Ritz method, Proc. Nat. Acad. Sci. U.S.A., 20 (1934), 529–532 0010.16901 CrossrefGoogle Scholar[50] Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441–479 10.1007/BF01456804 MR1511670 CrossrefISIGoogle Scholar[51] D. H. Weinstein, Über die Abhängigkeit des Eigenschwingungen einer Membran von deren Begrenzung, J. Reine Angew. Math., 141 (1912), 1–11 Google Scholar[52] Hermann Weyl, Ramifications, old and new, of the eigenvalue problem, Bull. Amer. Math. Soc., 56 (1950), 115–139 MR0034940 0041.21003 CrossrefISIGoogle Scholar Next article FiguresRelatedReferencesCited ByDetails A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions. Part II: Eigenvalue problemsESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51, No. 5 | 23 October 2017 Cross Ref Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming ApproximationsEric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin VohralíkSIAM Journal on Numerical Analysis, Vol. 55, No. 5 | 19 September 2017AbstractPDF (2524 KB)Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar ConstantsIvana Šebestová and Tomáš VejchodskýSIAM Journal on Numerical Analysis, Vol. 52, No. 1 | 6 February 2014AbstractPDF (930 KB)Analysis of dominant and higher order modes for transmission lines using parallel cylindersIEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 4 | 1 Apr 1994 Cross Ref A diffusion mechanism for obstacle detection from size-change informationIEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 1 | 1 Jan 1994 Cross Ref Related upper and lower bounds to atomic binding energiesInternational Journal of Quantum Chemistry, Vol. 46, No. 6 | 1 Jan 1993 Cross Ref Some Remarks Concerning Closure Rates for Aronszajn’s MethodNumerical Treatment of Eigenvalue Problems Vol. 5 / Numerische Behandlung von Eigenwertaufgaben Band 5 | 1 Jan 1991 Cross Ref Systematic lower bounds for lattice HamiltoniansJournal of Physics A: Mathematical and General, Vol. 22, No. 10 | 1 January 1999 Cross Ref An Extension of Aronszajn’S Rule: Slicing the Spectrum for Intermediate ProblemsChristopher BeattieSIAM Journal on Numerical Analysis, Vol. 24, No. 4 | 14 July 2006AbstractPDF (1749 KB)The eigenvalue problem for −Δu=λu with dirichlet boundary conditions for a certain class of two-dimensional regionsJournal of Sound and Vibration, Vol. 112, No. 3 | 1 Feb 1987 Cross Ref Lower Bounds for the Resonant Frequencies of Nonuniform Frame StructuresZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 67, No. 11 | 1 Jan 1987 Cross Ref Ein Stufenverfahren zur Berechnung von EigenwertschrankenNumerical Treatment of Eigenvalue Problems Vol.4 / Numerische Behandlung von Eigenwertaufgaben Band 4 | 1 Jan 1987 Cross Ref Convergence theorems for intermediate problemsProceedings of the Royal Society of Edinburgh: Section A Mathematics, Vol. 100, No. 1-2 | 14 November 2011 Cross Ref Eigenvalues of the Laplacian in Two DimensionsJ. R. Kuttler and V. G. SigillitoSIAM Review, Vol. 26, No. 2 | 10 July 2006AbstractPDF (2896 KB)A New Method for Calculating TE and TM Cutoff Frequencies of Uniform Waveguides with Lunar or Eccentric Annular Cross SectionIEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 4 | 1 Apr 1984 Cross Ref Sloshing frequenciesZAMP Zeitschrift f�r angewandte Mathematik und Physik, Vol. 34, No. 5 | 1 Sep 1983 Cross Ref The Computation of Convergent Lower Bounds in Quantum Mechanical Eigenvalue ProblemsNumerical Treatment of Eigenvalue Problems Vol. 3 / Numerische Behandlung von Eigenwertaufgaben Band 3 | 1 Jan 1983 Cross Ref Zur Einschliessung von EigenwertenNumerische Behandlung von Differentialgleichungen Band 3 | 1 Jan 1981 Cross Ref Useful Technical Devices in Intermediate ProblemsNumerische Behandlung von Differentialgleichungen Band 3 | 1 Jan 1981 Cross Ref Upper and lower bounds for sloshing frequencies by intermediate problemsZAMP Zeitschrift f�r angewandte Mathematik und Physik, Vol. 32, No. 6 | 1 Jan 1981 Cross Ref Bounding Eigenvalues of Elliptic OperatorsJ. R. Kuttler and V. G. SigillitoSIAM Journal on Mathematical Analysis, Vol. 9, No. 4 | 17 February 2012AbstractPDF (473 KB)An Eigenvalue Estimation Method of Weinberger and Weinstein’s Intermediate ProblemsDavid W. Fox and James T. StadterSIAM Journal on Mathematical Analysis, Vol. 8, No. 3 | 17 February 2012AbstractPDF (1116 KB)Computation of upper and lower bounds to the frequencies of clamped cylindrical shellsEarthquake Engineering & Structural Dynamics, Vol. 4, No. 6 | 1 Oct 1976 Cross Ref The Rayleigh–Ritz and Weinstein–Bazley Methods Applied to a Class of Ordinary Differential Equations of the Second Order. IITetsuro YamamotoSIAM Journal on Numerical Analysis, Vol. 12, No. 3 | 14 July 2006AbstractPDF (682 KB)Direct Methods for Computing Eigenvalues of the Finite-Difference LaplacianJ. R. KuttlerSIAM Journal on Numerical Analysis, Vol. 11, No. 4 | 14 July 2006AbstractPDF (720 KB)Computation of upper and lower bounds to the frequencies of elastic systems by the method of Lehmann and MaehlyInternational Journal for Numerical Methods in Engineering, Vol. 6, No. 3 | 1 Jan 1973 Cross Ref Über stabile Eigenwerte und die Konvergenz des Weinstein-Aronszajn-Bazley-Fox-Verfahrens bei nicht notwendig rein diskretem SpektrumComputing, Vol. 9, No. 3 | 1 Sep 1972 Cross Ref New lower bounds for energies of radial lithiumChemical Physics Letters, Vol. 14, No. 5 | 1 Jul 1972 Cross Ref Chapter 7 Introduction to Variational PrinciplesThe Method of Weighted Residuals and Variational Principles - With Application in Fluid Mechanics, Heat and Mass Transfer | 1 Jan 1972 Cross Ref BibliographyMethods of Intermediate Problems for Eigenvalues: Theory and Ramifications | 1 Jan 1972 Cross Ref Natural frequencies and elastic stability of a simply-supported rectangular plate under linearly varying compressive loadsInternational Journal of Solids and Structures, Vol. 7, No. 5 | 1 May 1971 Cross Ref Untere Schranken f�r die Eigenwerte selbstadjungierter positiv-definiter OperatorenNumerische Mathematik, Vol. 17, No. 2 | 1 Apr 1971 Cross Ref Effect of a thermal gradient on the natural frequencies of a rectangular plateInternational Journal of Mechanical Sciences, Vol. 12, No. 2 | 1 Feb 1970 Cross Ref Volume 8, Issue 4| 1966SIAM Review427-591 History Submitted:22 March 1966Published online:18 July 2006 InformationCopyright © 1966 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1008101Article page range:pp. 427-462ISSN (print):0036-1445ISSN (online):1095-7200Publisher:Society for Industrial and Applied Mathematics

Referência(s)
Altmetric
PlumX