Phosphorylation of the Platelet p47 Phosphoprotein Is Mediated by the Lipid Products of Phosphoinositide 3-Kinase
1995; Elsevier BV; Volume: 270; Issue: 49 Linguagem: Inglês
10.1074/jbc.270.49.29525
ISSN1083-351X
AutoresAlex Toker, Christilla Bachelot‐Loza, Ching‐Shih Chen, John R. Falck, John H. Hartwig, Lewis C. Cantley, Tibor Kovacsovics,
Tópico(s)PI3K/AKT/mTOR signaling in cancer
ResumoPlatelet stimulation by thrombin or the thrombin receptor activating peptide (TRAP) results in the activation of phosphoinositide 3-kinase and the production of the novel polyphosphoinositides phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3). We have shown previously that these lipids activate calcium-independent protein kinase C (PKC) isoforms in vitro (Toker, A., Meyer, M., Reddy, K. K., Falck, J. R., Aneja, R., Aneja, S., Parra, A., Burns, D. J., Ballas, L. M. and Cantley, L. C.(1994) J. Biol. Chem. 269, 32358-32367). Activation of platelet PKC in response to TRAP is detected by the phosphorylation of the major PKC substrate in platelets, the p47 phosphoprotein, also known as pleckstrin. Here we provide evidence for two phases of pleckstrin phosphorylation in response to TRAP. A rapid phase of pleckstrin phosphorylation ( 2 min) is inhibited by wortmannin concentrations that block PtdIns-3,4-P2 production. Phorbol ester-mediated pleckstrin phosphorylation was not affected by wortmannin and wortmannin had no effect on purified platelet PKC activity. Phosphorylation of pleckstrin could be induced using permeabilized platelets supplied with exogenous γ-32P[ATP] and synthetic dipalmitoyl PtdIns-3,4,5-P3 and dipalmitoyl PtdIns-3,4-P2 micelles, but not with dipalmitoyl phosphatidylinositol 3-phosphate or phosphatidylinositol 4,5-bisphosphate. These results suggest two modes of stimulating pleckstrin phosphorylation: a rapid activation of PKC (via diacylglycerol and calcium) followed by a slower activation of calcium-independent PKCs via PtdIns-3,4-P2. Platelet stimulation by thrombin or the thrombin receptor activating peptide (TRAP) results in the activation of phosphoinositide 3-kinase and the production of the novel polyphosphoinositides phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3). We have shown previously that these lipids activate calcium-independent protein kinase C (PKC) isoforms in vitro (Toker, A., Meyer, M., Reddy, K. K., Falck, J. R., Aneja, R., Aneja, S., Parra, A., Burns, D. J., Ballas, L. M. and Cantley, L. C.(1994) J. Biol. Chem. 269, 32358-32367). Activation of platelet PKC in response to TRAP is detected by the phosphorylation of the major PKC substrate in platelets, the p47 phosphoprotein, also known as pleckstrin. Here we provide evidence for two phases of pleckstrin phosphorylation in response to TRAP. A rapid phase of pleckstrin phosphorylation ( 2 min) is inhibited by wortmannin concentrations that block PtdIns-3,4-P2 production. Phorbol ester-mediated pleckstrin phosphorylation was not affected by wortmannin and wortmannin had no effect on purified platelet PKC activity. Phosphorylation of pleckstrin could be induced using permeabilized platelets supplied with exogenous γ-32P[ATP] and synthetic dipalmitoyl PtdIns-3,4,5-P3 and dipalmitoyl PtdIns-3,4-P2 micelles, but not with dipalmitoyl phosphatidylinositol 3-phosphate or phosphatidylinositol 4,5-bisphosphate. These results suggest two modes of stimulating pleckstrin phosphorylation: a rapid activation of PKC (via diacylglycerol and calcium) followed by a slower activation of calcium-independent PKCs via PtdIns-3,4-P2.
Referência(s)