Divergent Signaling Pathways Requiring Discrete Calcium Signals Mediate Concurrent Activation of Two Mitogen-activated Protein Kinases by Gonadotropin-releasing Hormone
2000; Elsevier BV; Volume: 275; Issue: 19 Linguagem: Inglês
10.1074/jbc.275.19.14182
ISSN1083-351X
AutoresJennifer M. Mulvaney, Mark S. Roberson,
Tópico(s)Mechanisms of cancer metastasis
ResumoReceptors coupled to heterotrimeric G proteins are linked to activation of mitogen-activated protein kinases (MAPKs) via receptor- and cell-specific mechanisms. We have demonstrated recently that gonadotropin-releasing hormone (GnRH) receptor occupancy results in activation of extracellular signal-regulated kinase (ERK) through a mechanism requiring calcium influx through L-type calcium channels in alphaT3-1 cells and primary rat gonadotropes. Further studies were undertaken to explore the signaling mechanisms by which the GnRH receptor is coupled to activation of another member of the MAPK family, c-Jun N-terminal kinase (JNK). GnRH induces activation of the JNK cascade in a dose-, time-, and receptor-dependent manner in clonal alphaT3-1 cells and primary rat pituitary gonadotrophs. Coexpression of dominant negative Cdc42 and kinase-defective p21-activated kinase 1 and MAPK kinase 7 with JNK and ERK indicated that specific activation of JNK by GnRH appears to involve these signaling molecules. Unlike ERK activation, GnRH-stimulated JNK activity does not require activation of protein kinase C and is not blocked after chelation of extracellular calcium with EGTA. GnRH-induced JNK activity was reduced after treatment with the intracellular calcium chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester), whereas activation of ERK was not affected. Chelation of intracellular calcium also reduced GnRH-induced activation of JNK in rat pituitary cells in primary culture. GnRH-induced induction and activation of the JNK target c-Jun was inhibited after chelation of intracellular calcium, whereas induction of c-Fos, a known target of ERK, was unaffected. Therefore, although activation of ERK by GnRH requires a specific influx of calcium through L-type calcium channels, JNK activation is independent of extracellular calcium but sensitive to chelation of intracellular calcium. Our results provide novel evidence that GnRH activates two MAPK superfamily members via strikingly divergent signaling pathways with differential sensitivity to activation of protein kinase C and mobilization of discrete pools of calcium.
Referência(s)