Artigo Acesso aberto Revisado por pares

A Wide Area Survey for High‐Redshift Massive Galaxies. I. Number Counts and Clustering of BzKs and EROs

2006; IOP Publishing; Volume: 638; Issue: 1 Linguagem: Inglês

10.1086/498698

ISSN

1538-4357

Autores

Xu Kong, E. Daddi, N. Arimoto, A. Renzini, Tom Broadhurst, A. Cimatti, Chisato Ikuta, Kouji Ohta, L. N. da Costa, L. F. Olsen, Masato Onodera, N. Tamura,

Tópico(s)

Astrophysics and Star Formation Studies

Resumo

We have combined deep BRIz' imaging over 2x940 arcmin^2 fields obtained with the Suprime-Cam on the Subaru telescope with JKs imaging with the SOFI camera at the New Technology Telescope to search for high-redshift massive galaxies. K-band selected galaxies have been identified over an area of ~920 arcmin^2 to K_Vega=19.2, of which 320 arcmin^2 are complete to K_Vega=20. The BzK selection technique was used to obtain complete samples of ~500 candidate massive star-forming galaxies (sBzKs) and ~160 candidate massive, passively-evolving galaxies (pBzKs), both at 1.4 5 criterion we also identified ~850 extremely red objects (EROs). The surface density of sBzKs and pBzKs is found to 1.20+/-0.05 arcmin^{-2} and 0.38+/-0.03 arcmin^{-2}, respectively. Both sBzKs and pBzKs are strongly clustered, at a level at least comparable to that of EROs, with pBzKs appearing more clustered than sBzKs. We estimate the reddening, star formation rates (SFRs) and stellar masses (M_*) of the sBzKs, confirming that to K_Vega~20 median values are M_*~10^{11}M_sun, SFR 190M_sun yr^{-1}, and E(B-V)~0.44. The most massive sBzKs are also the most actively star-forming, an effect which can be seen as a manifestation of downsizing at early epochs. The space density of massive pBzKs at z~1.4-2 is 20%+/-7% that of similarly massive early-type galaxies at z~0, and similar to that of sBzKs of the same mass. We argue that star formation quenching in these sBzKs will result in nearly doubling the space density of massive early-type galaxies, thus matching their local density.

Referência(s)