Artigo Acesso aberto Revisado por pares

SOST Is a Ligand for LRP5/LRP6 and a Wnt Signaling Inhibitor

2005; Elsevier BV; Volume: 280; Issue: 29 Linguagem: Inglês

10.1074/jbc.m504308200

ISSN

1083-351X

Autores

Mikhail A. Semenov, Keiko Tamai, Xi He,

Tópico(s)

Kruppel-like factors research

Resumo

Sclerosteosis is an autosomal recessive disease that is characterized by overgrowth of bone tissue and is linked to mutations in the gene encoding the secreted protein SOST. Sclerosteosis shares remarkable similarities with “high bone mass” diseases caused by “gain-of-function” mutations in the LRP5 gene, which encodes a coreceptor for Wnt signaling proteins. We show here that SOST antagonizes Wnt signaling in Xenopus embryos and mammalian cells by binding to the extracellular domain of the Wnt coreceptors LRP5 and LRP6 and disrupting Wnt-induced Frizzled-LRP complex formation. Our findings suggest that SOST is an antagonist for Wnt signaling and that the loss of SOST function likely leads to the hyperactivation of Wnt signaling that underlies bone overgrowth seen in sclerosteosis patients. Sclerosteosis is an autosomal recessive disease that is characterized by overgrowth of bone tissue and is linked to mutations in the gene encoding the secreted protein SOST. Sclerosteosis shares remarkable similarities with “high bone mass” diseases caused by “gain-of-function” mutations in the LRP5 gene, which encodes a coreceptor for Wnt signaling proteins. We show here that SOST antagonizes Wnt signaling in Xenopus embryos and mammalian cells by binding to the extracellular domain of the Wnt coreceptors LRP5 and LRP6 and disrupting Wnt-induced Frizzled-LRP complex formation. Our findings suggest that SOST is an antagonist for Wnt signaling and that the loss of SOST function likely leads to the hyperactivation of Wnt signaling that underlies bone overgrowth seen in sclerosteosis patients. Sclerosteosis (1Beighton P. Durr L. Hamersma H. Ann. Intern. Med. 1976; 84: 393-397Crossref PubMed Scopus (100) Google Scholar) and Van Buchem (2van Buchem F.S.P. Hadders H.N. Ubbens R. Acta Radiol. (Stockh.). 1955; 44: 109-120Crossref PubMed Scopus (102) Google Scholar) disease are rare forms of autosomal recessive severe craniotubular hyperostoses. Both diseases are characterized by generalized overgrowth of bone tissue mostly manifested in cranial bones and in the diaphysis of tubular bones (3Hamersma H. Gardner J. Beighton P. Clin. Genet. 2003; 63: 192-197Crossref PubMed Scopus (174) Google Scholar). Bone overgrowth appears as early as at the age of 5 years and becoming more prominent with time. Sclerosteosis is linked to a loss of function of the SOST gene product (4Balemans W. Ebeling M. Patel N. Van Hul E. Olson P. Dioszegi M. Lacza C. Wuyts W. Van Den Ende J. Willems P. Paes-Alves A.F. Hill S. Bueno M. Ramos F.J. Tacconi P. Dikkers F.G. Stratakis C. Lindpaintner K. Vickery B. Foernzler D. Van Hul W. Hum. Mol. Genet. 2001; 10: 537-543Crossref PubMed Scopus (924) Google Scholar, 5Brunkow M.E. Gardner J.C. Van Ness J. Paeper B.W. Kovacevich B.R. Proll S. Skonier J.E. Zhao L. Sabo P.J. Fu Y. Alisch R.S. Gillett L. Colbert T. Tacconi P. Galas D. Hamersma H. Beighton P. Mulligan J. Am. J. Hum. Genet. 2001; 68: 577-589Abstract Full Text Full Text PDF PubMed Scopus (806) Google Scholar), whereas Van Buchem disease is linked to a 52-kb deletion downstream of the SOST gene that causes down-regulation of SOST gene expression (6Balemans W. Patel N. Ebeling M. Van Hul E. Wuyts W. Lacza C. Dioszegi M. Dikkers F.G. Hildering P. Willems P.J. Verheij J.B. Lindpaintner K. Vickery B. Foernzler D. Van Hul W. J. Med. Genet. 2002; 39: 91-97Crossref PubMed Scopus (582) Google Scholar, 7Staehling-Hampton K. Proll S. Paeper B.W. Zhao L. Charmley P. Brown A. Gardner J.C. Galas D. Schatzman R.C. Beighton P. Papapoulos S. Hamersma H. Brunkow M.E. Am. J. Med. Genet. 2002; 110: 144-152Crossref PubMed Scopus (248) Google Scholar). The SOST gene encodes a secreted protein. During embryogenesis SOST expression is first detected in the mesenchyme at the sites of osteogenesis (8Kusu N. Laurikkala J. Imanishi M. Usui H. Konishi M. Miyake A. Thesleff I. Itoh N. J. Biol. Chem. 2003; 278: 24113-24117Abstract Full Text Full Text PDF PubMed Scopus (210) Google Scholar, 9Winkler D.G. Sutherland M.K. Geoghegan J.C. Yu C. Hayes T. Skonier J.E. Shpektor D. Jonas M. Kovacevich B.R. Staehling-Hampton K. Appleby M. Brunkow M.E. Latham J.A. EMBO J. 2003; 22: 6267-6276Crossref PubMed Scopus (876) Google Scholar), and SOST expression is confined specifically to osteoblasts and osteocytes postnatally (9Winkler D.G. Sutherland M.K. Geoghegan J.C. Yu C. Hayes T. Skonier J.E. Shpektor D. Jonas M. Kovacevich B.R. Staehling-Hampton K. Appleby M. Brunkow M.E. Latham J.A. EMBO J. 2003; 22: 6267-6276Crossref PubMed Scopus (876) Google Scholar, 10van Bezooijen R.L. Roelen B.A. Visser A. van der Wee-Pals L. de Wilt E. Karperien M. Hamersma H. Papapoulos S.E. ten Dijke P. Lowik C.W. J. Exp. Med. 2004; 199: 805-814Crossref PubMed Scopus (693) Google Scholar). The increased rate of bone formation and elevated levels of serum alkaline phosphatase and osteocalcin in SOST mutation carriers suggest that excessive bone accumulation is most likely due to an increase in osteoblast activity upon the loss or decrease of SOST expression (5Brunkow M.E. Gardner J.C. Van Ness J. Paeper B.W. Kovacevich B.R. Proll S. Skonier J.E. Zhao L. Sabo P.J. Fu Y. Alisch R.S. Gillett L. Colbert T. Tacconi P. Galas D. Hamersma H. Beighton P. Mulligan J. Am. J. Hum. Genet. 2001; 68: 577-589Abstract Full Text Full Text PDF PubMed Scopus (806) Google Scholar, 11Wergedal J.E. Veskovic K. Hellan M. Nyght C. Balemans W. Libanati C. Vanhoenacker F.M. Tan J. Baylink D.J. Van Hul W. J. Clin. Endocrinol. Metab. 2003; 88: 5778-5783Crossref PubMed Scopus (77) Google Scholar). Some studies suggest that the ability of SOST to decrease osteogenic activity of osteoblasts may be explained by its anti-BMP 1The abbreviations used are: BMP, bone morphogenetic protein; CM, conditioned medium; DKK, Dickkopf; Fz, Frizzled; HBM, high bone mass; LRP, low-density lipoprotein receptor-related protein; Xnr3, Xenopus nodal-related 3. activity (8Kusu N. Laurikkala J. Imanishi M. Usui H. Konishi M. Miyake A. Thesleff I. Itoh N. J. Biol. Chem. 2003; 278: 24113-24117Abstract Full Text Full Text PDF PubMed Scopus (210) Google Scholar, 9Winkler D.G. Sutherland M.K. Geoghegan J.C. Yu C. Hayes T. Skonier J.E. Shpektor D. Jonas M. Kovacevich B.R. Staehling-Hampton K. Appleby M. Brunkow M.E. Latham J.A. EMBO J. 2003; 22: 6267-6276Crossref PubMed Scopus (876) Google Scholar, 10van Bezooijen R.L. Roelen B.A. Visser A. van der Wee-Pals L. de Wilt E. Karperien M. Hamersma H. Papapoulos S.E. ten Dijke P. Lowik C.W. J. Exp. Med. 2004; 199: 805-814Crossref PubMed Scopus (693) Google Scholar). However, SOST clearly has additional activities. SOST induces apoptosis of human osteoblastic cells, an activity that other BMP antagonists such as Noggin, Chordin, and Gremlin do not possess (12Sutherland M.K. Geoghegan J.C. Yu C. Turcott E. Skonier J.E. Winkler D.G. Latham J.A. Bone. 2004; 35: 828-835Crossref PubMed Scopus (188) Google Scholar). Furthermore, despite the ability of SOST to antagonize osteoblast differentiation induced by BMP, SOST does not inhibit BMP-induced SMAD protein phosphorylation or luciferase reporters driven by BMP-responsive elements (10van Bezooijen R.L. Roelen B.A. Visser A. van der Wee-Pals L. de Wilt E. Karperien M. Hamersma H. Papapoulos S.E. ten Dijke P. Lowik C.W. J. Exp. Med. 2004; 199: 805-814Crossref PubMed Scopus (693) Google Scholar). These data suggest that SOST may affect other signaling pathways that complement or mediate the effect of BMP on osteoblasts. Sclerosteosis and Van Buchem disease share a remarkable similarity with the “high bone mass” (HBM) phenotype, as these diseases are all caused by an increase of osteogenic activity of osteoblasts and osteocytes and are classified as “craniotubular hyperostoses” (13Johnson M.L. Harnish K. Nusse R. Van Hul W. J. Bone Miner. Res. 2004; 19: 1749-1757Crossref PubMed Scopus (183) Google Scholar). HBM is associated with “activating” mutations in the LRP5 gene (14Boyden L.M. Mao J. Belsky J. Mitzner L. Farhi A. Mitnick M.A. Wu D. Insogna K. Lifton R.P. N. Engl. J. Med. 2002; 346: 1513-1521Crossref PubMed Scopus (1345) Google Scholar, 15Little R.D. Carulli J.P. Del Mastro R.G. Dupuis J. Osborne M. Folz C. Manning S.P. Swain P.M. Zhao S.C. Eustace B. Lappe M.M. Spitzer L. Zweier S. Braunschweiger K. Benchekroun Y. Hu X. Adair R. Chee L. FitzGerald M.G. Tulig C. Caruso A. Tzellas N. Bawa A. Franklin B. McGuire S. Nogues X. Gong G. Allen K.M. Anisowicz A. Morales A.J. Lomedico P.T. Recker S.M. Van Eerdewegh P. Recker R.R. Johnson M.L. Am. J. Hum. Genet. 2002; 70: 11-19Abstract Full Text Full Text PDF PubMed Scopus (1096) Google Scholar, 16Van Wesenbeeck L. Cleiren E. Gram J. Beals R.K. Benichou O. Scopelliti D. Key L. Renton T. Bartels C. Gong Y. Warman M.L. De Vernejoul M.C. Bollerslev J. Van Hul W. Am. J. Hum. Genet. 2003; 72: 763-771Abstract Full Text Full Text PDF PubMed Scopus (486) Google Scholar), which encodes a Wnt coreceptor (17Wehrli M. Dougan S.T. Caldwell K. O'Keefe L. Schwartz S. Vaizel-Ohayon D. Schejter E. Tomlinson A. DiNardo S. Nature. 2000; 407: 527-530Crossref PubMed Scopus (727) Google Scholar, 18Pinson K.I. Brennan J. Monkley S. Avery B.J. Skarnes W.C. Nature. 2000; 407: 535-538Crossref PubMed Scopus (904) Google Scholar, 19Tamai K. Semenov M. Kato Y. Spokony R. Liu C. Katsuyama Y. Hess F. Saint-Jeannet J.P. He X. Nature. 2000; 407: 530-535Crossref PubMed Scopus (1103) Google Scholar). Thus, a lack of SOST function exhibits phenotypes related to excessive LRP5 function, implying the possibility that SOST may antagonize LRP5 function. Interestingly, SOST is related to WISE, a secreted protein that binds to the Wnt coreceptor LRP6 and modulates (activates or inhibits) Wnt signaling in a cell context-dependent manner (20Itasaki N. Jones C.M. Mercurio S. Rowe A. Domingos P.M. Smith J.C. Krumlauf R. Development. 2003; 130: 4295-4305Crossref PubMed Scopus (273) Google Scholar). Here we show that SOST binds to both LRP5 and LRP6 and inhibits the canonical Wnt pathway. Our results suggest that sclerosteosis and Van Buchem disease may be a result of hyperactive Wnt signaling. SOST cDNA was cloned by PCR using IMAGE cDNA clone 2380708 as the template. SOST/pcDNA3.1+ contains the full-length SOST. SOST-Myc/pcDNA3 and SOST-IgG/pcDNA3.1+ were generated by fusion at the 5′-end of full-length SOST cDNA without the stop codon with the 6× Myc epitope tag from CS2+MT or the IgG tag from IgG/pRK5 (21Hsieh J.C. Rattner A. Smallwood P.M. Nathans J. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 3546-3551Crossref PubMed Scopus (292) Google Scholar). Kremen2/pCS (22Mao B. Wu W. Davidson G. Marhold J. Li M. Mechler B.M. Delius H. Hoppe D. Stannek P. Walter C. Glinka A. Niehrs C. Nature. 2002; 417: 664-667Crossref PubMed Scopus (873) Google Scholar), DKK1-FLAG/CS2+ (23Krupnik V.E. Sharp J.D. Jiang C. Robison K. Chickering T.W. Amaravadi L. Brown D.E. Guyot D. Mays G. Leiby K. Chang B. Duong T. Goodearl A.D. Gearing D.P. Sokol S.Y. McCarthy S.A. Gene. 1999; 238: 301-313Crossref PubMed Scopus (421) Google Scholar), LRP6N-Myc/pcDNA3, Xwnt8/CS2+ (19Tamai K. Semenov M. Kato Y. Spokony R. Liu C. Katsuyama Y. Hess F. Saint-Jeannet J.P. He X. Nature. 2000; 407: 530-535Crossref PubMed Scopus (1103) Google Scholar), LRP5N-Myc/pcDNA3, LDLRN-Myc/pcDNA3 (24Semenov M.V. Tamai K. Brott B.K. Kuhl M. Sokol S. He X. Curr. Biol. 2001; 11: 951-961Abstract Full Text Full Text PDF PubMed Scopus (602) Google Scholar), Fz8CRD-IgG (21Hsieh J.C. Rattner A. Smallwood P.M. Nathans J. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 3546-3551Crossref PubMed Scopus (292) Google Scholar), tBR/pSP64T+ (25Graff J.M. Thies R.S. Song J.J. Celeste A.J. Melton D.A. Cell. 1994; 79: 169-179Abstract Full Text PDF PubMed Scopus (430) Google Scholar), LRP5/pcDNA3 (26Hey P.J. Twells R.C. Phillips M.S. Yusuke N. Brown S.D. Kawaguchi Y. Cox R. Guochun X. Dugan V. Hammond H. Metzker M.L. Todd J.A. Hess J.F. Gene. 1998; 216: 103-111Crossref PubMed Scopus (192) Google Scholar), LRP6/pcDNA3.1 (27Brown S.D. Twells R.C. Hey P.J. Cox R.D. Levy E.R. Soderman A.R. Metzker M.L. Caskey C.T. Todd J.A. Hess J.F. Biochem. Biophys. Res. Commun. 1998; 248: 879-888Crossref PubMed Scopus (177) Google Scholar), LRP6ΔN/CS2+ (28Tamai K. Zeng X. Liu C. Zhang X. Harada Y. Chang Z. He X. Mol. Cell. 2004; 13: 149-156Abstract Full Text Full Text PDF PubMed Scopus (452) Google Scholar), Wnt1/LNCX (29Munsterberg A.E. Kitajewski J. Bumcrot D.A. McMahon A.P. Lassar A.B. Genes Dev. 1995; 9: 2911-2922Crossref PubMed Scopus (444) Google Scholar), and PSecAP-MH (30Cheng H.J. Flanagan J.G. Cell. 1994; 79: 157-168Abstract Full Text PDF PubMed Scopus (328) Google Scholar) constructions have been described previously. Precipitation and immunoblotting were done similarly to Hsieh et al. (21Hsieh J.C. Rattner A. Smallwood P.M. Nathans J. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 3546-3551Crossref PubMed Scopus (292) Google Scholar). Fz-LRP6 complex formation (19Tamai K. Semenov M. Kato Y. Spokony R. Liu C. Katsuyama Y. Hess F. Saint-Jeannet J.P. He X. Nature. 2000; 407: 530-535Crossref PubMed Scopus (1103) Google Scholar), cytosolic β-catenin assay, and LRP6N-Fz8 complex disruption by SOST or DKK1 were performed as described previously (24Semenov M.V. Tamai K. Brott B.K. Kuhl M. Sokol S. He X. Curr. Biol. 2001; 11: 951-961Abstract Full Text Full Text PDF PubMed Scopus (602) Google Scholar). Xenopus injection and RT-PCR were performed as described previously (24Semenov M.V. Tamai K. Brott B.K. Kuhl M. Sokol S. He X. Curr. Biol. 2001; 11: 951-961Abstract Full Text Full Text PDF PubMed Scopus (602) Google Scholar). Rat2 and HEK293T cells were maintained in high glucose Dulbecco's modified Eagle's medium with 10% newborn calf serum. Wnt1 conditioned medium (CM) was collected from retrovirally infected Rat2 cells. Other CMs were collected from transiently transfected HEK293T cells. TOPflash reporter assays were performed using the Dual-Luciferase reporter assay system (Promega). HEK293T cells were seeded into 24-well plates 1 day before transfection. Cells were transfected with 100 ng of SuperTOPflash reporter plasmid (31Veeman M.T. Slusarski D.C. Kaykas A. Louie S.H. Moon R.T. Curr. Biol. 2003; 13: 680-685Abstract Full Text Full Text PDF PubMed Scopus (733) Google Scholar) and 10 ng of pRL-TK plasmid (Promega) with other plasmids as indicated in the experiment descriptions using Lipofectamine reagent (Invitrogen). DNA amounts were balanced with pcDNA3.1+ plasmid. Cell extracts were prepared 36 h after transfection and assayed sequentially for firefly and Renilla luciferase activity. Firefly luciferase readings were normalized against Renilla luciferase. Xenopus axis duplication assay provides a sensitive and reliable way to test Wnt stimulatory and Wnt inhibitory activities (32Harland R. Gerhart J. Annu. Rev. Cell Dev. Biol. 1997; 13: 611-667Crossref PubMed Scopus (683) Google Scholar). Injection of 5 pg of Xwnt8 or 50 pg of LRP6ΔN mRNA (an constitutively active mutant LRP6) into the ventral marginal zone of a four-cell Xenopus embryo caused ectopic axis formation in >80% of injected embryos (Fig. 1A). SOST mRNA ventral injection alone did not induce ectopic axis formation even when injected at a high dose (2000 pg/embryo). However, SOST mRNA efficiently blocked axis duplication by Xwnt8 mRNA (Fig. 1A). Thus, SOST antagonizes Xwnt8 activity. LRP6ΔN activated Wnt signaling in a Wnt-independent manner and was not inhibited by SOST (Fig. 1A). Two versions of SOST, an untagged SOST and a SOST with a carboxyl-terminal Myc tag, showed the same activity in antagonizing Wnt signaling in this assay (Fig. 1A). To ensure that SOST directly antagonizes Wnt signaling, we examined the ability of SOST to inhibit Xenopus nodal-related 3 (Xnr3) induction by Wnt8 in animal pole explants, because Xnr3 is a directly downstream target of Wnt signaling (32Harland R. Gerhart J. Annu. Rev. Cell Dev. Biol. 1997; 13: 611-667Crossref PubMed Scopus (683) Google Scholar). SOST blocked Xnr3 activation by Xwnt8 but not by LRP6ΔN (Fig. 1B). SOST mRNA injection alone did not induce Xnr3 expression (Fig. 1B). We also examined whether SOST possesses anti-BMP activity in Xenopus embryos (33Glinka A. Wu W. Delius H. Monaghan A.P. Blumenstock C. Niehrs C. Nature. 1998; 391: 357-362Crossref PubMed Scopus (1362) Google Scholar, 34Suzuki A. Thies R.S. Yamaji N. Song J.J. Wozney J.M. Murakami K. Ueno N. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 10255-10259Crossref PubMed Scopus (417) Google Scholar). Injection ventrally of 250 pg of truncated BMP receptor mRNA efficiently blocked BMP signaling in developing Xenopus embryos and caused trunk duplication in >80% of injected embryos. By contrast, SOST mRNA injection even at 2000 pg could not induce trunk axis duplication (Fig. 1C). Furthermore, dorsal injection of SOST mRNA (2000 pg/embryo) at the four-cell stage resulted in exaggerated anterior development such as enlargement of the cement gland (not shown), a phenotype similar to that observed by the injection of other Wnt antagonists (33Glinka A. Wu W. Delius H. Monaghan A.P. Blumenstock C. Niehrs C. Nature. 1998; 391: 357-362Crossref PubMed Scopus (1362) Google Scholar). Thus, SOST shows potent anti-Wnt activity and does not exhibit anti-BMP activity in Xenopus embryos. To test the ability of SOST to inhibit Wnt signaling in mammalian cells, we employed the SuperTOPflash reporter (31Veeman M.T. Slusarski D.C. Kaykas A. Louie S.H. Moon R.T. Curr. Biol. 2003; 13: 680-685Abstract Full Text Full Text PDF PubMed Scopus (733) Google Scholar, 35Korinek V. Barker N. Morin P.J. van Wichen D. de Weger R. Kinzler K.W. Vogelstein B. Clevers H. Science. 1997; 275: 1784-1787Crossref PubMed Scopus (2950) Google Scholar), which is driven by T cell factor/lymphoid enhancer factor-binding elements and is responsive to Wnt signaling. The SuperTOPflash reporter was readily activated in HEK293T cells transfected with a Wnt1-expressing plasmid. Co-expression of a SOST expression plasmid inhibited Wnt signaling in a dose-dependent manner (Fig. 2A). To further study the SOST protein biochemically, we generated CM from HEK293T cells transfected with the SOST-Myc plasmid. We found that the majority of the SOST protein remains cell-associated (Fig. 2B). The major SOST isoform associated with cells and in the CM had an apparent molecular mass of 40 kDa as compared with the calculated molecular mass of 33 kDa. In addition, SOST isoforms with apparent molecular masses from 40 to 50 kDa and from 70 to 110 kDa were also detected in the CM (Fig. 2B). These higher molecular mass isoforms may be attributed to post-translational modifications, because SOST has two predicted sites for N-glycosylation at Asn-53 and Asn-175 (www.w.cbs.dtu.dk/services/NetNGlyc/) and one site for O-linked glycosylation at Thr-55 (www.cbs.dtu.dk/services/NetOGlyc/) (36Julenius K. Molgaard A. Gupta R. Brunak S. Glycobiology. 2005; 15: 153-164Crossref PubMed Scopus (779) Google Scholar). We tested SOST CM for inhibition of Wnt signaling. Indeed, SOST CM inhibited cytosolic β-catenin accumulation induced by Wnt-1 CM in Rat2 cells (Fig. 2C). Thus, secreted SOST directly antagonizes Wnt1 activity extracellularly. Similarities between sclerosteosis (associated with the loss of SOST function) and HBM disease linked to hyperactive LRP5 signaling suggest that SOST may antagonize Wnt signaling via direct binding to LRP5. To test the binding between SOST and LRP5 as well as LRP6, we produced CM containing a SOST-IgG fusion protein, which tags SOST with the constant region of immunoglobulin heavy chain, and the extracellular portion of LRP5 and LRP6 tagged with the Myc epitope (LRP5N-Myc and LRP6N-Myc). We found that SOST showed specific interactions with LRP5 and LRP6 but not with a similarly tagged low-density lipoprotein receptor (LDLRN-Myc) (Fig. 3A). Furthermore, when LDLRN-Myc was mixed in large excess together with LRP5N-Myc and LRP6N-Myc, SOST specifically bound to LRP5 and LRP6 (Fig. 3A). As an additional control for the binding specificity, we used Fz8CRD-IgG, which has a similar molecular mass to that of SOST-IgG. Despite much higher abundance in the CM, Fz8CRD-IgG was unable to precipitate any detectable amount of LRP5 or LRP6 protein (Fig. 3A). To further demonstrate SOST-LRP5 and SOST-LRP6 interaction functionally, we examined whether SOST could inhibit LRP5 or LRP6 signaling activities. Although LRP5 and LRP6 overexpression alone showed little activation of Wnt signaling in the SuperTOPflash assay, LRP5 or LRP6 synergized robustly with Wnt1 (Fig. 3B). SOST efficiently inhibited signaling activated by Wnt1 plus LRP5 or Wnt1 plus LRP6 (Fig. 3B), showing that SOST functionally antagonizes signaling by LRP5 and LRP6. Formation of complexes between LRP5 or LRP6 and Frizzled (Fz) proteins in the presence of Wnt proteins has been proposed to be an initial step in Wnt signaling activation (19Tamai K. Semenov M. Kato Y. Spokony R. Liu C. Katsuyama Y. Hess F. Saint-Jeannet J.P. He X. Nature. 2000; 407: 530-535Crossref PubMed Scopus (1103) Google Scholar). As we showed previously (19Tamai K. Semenov M. Kato Y. Spokony R. Liu C. Katsuyama Y. Hess F. Saint-Jeannet J.P. He X. Nature. 2000; 407: 530-535Crossref PubMed Scopus (1103) Google Scholar), Fz8CRD-IgG showed no interaction with the extracellular domain of LRP6 (Figs. 3A and 4A), but the addition of Wnt1 CM induced the formation of complexes between Fz8 and LRP6 (Fig. 4A). The addition of CM containing either untagged or Myc-tagged SOST efficiently blocked such complex formation. CM containing alkaline phosphatase, used as a negative control, had no effect on complex formation (Fig. 4A). Thus, SOST appears to be able to disrupt Wnt-induced Fz-LRP6 complex formation. We have shown that another Wnt antagonist, DKK1, also interacts with LRP5 and LRP6 and prevents Wnt-induced complex formation between LRP5/6 and Fz proteins (24Semenov M.V. Tamai K. Brott B.K. Kuhl M. Sokol S. He X. Curr. Biol. 2001; 11: 951-961Abstract Full Text Full Text PDF PubMed Scopus (602) Google Scholar). The anti-Wnt activity of DKK1 can be greatly enhanced by Kremen proteins, which also bind DKK1 (22Mao B. Wu W. Davidson G. Marhold J. Li M. Mechler B.M. Delius H. Hoppe D. Stannek P. Walter C. Glinka A. Niehrs C. Nature. 2002; 417: 664-667Crossref PubMed Scopus (873) Google Scholar). We thus compared the relationship between Kremen and SOST or DKK1 in Wnt signaling inhibition. We activated Wnt signaling by co-transfecting Wnt1 plus LRP5 in HEK293T cells (Fig. 4B) and used a suboptimal amount of SOST or DKK1 that exhibited slight inhibition of Wnt effect (Fig. 4B). Expression of Kremen2 down-regulated Wnt signaling activity by ∼40% in cells expressing LRP5 with Wnt1 (this was likely due to endogenous DKK1 gene induction by activated Wnt signaling) (37Chamorro M.N. Schwartz D.R. Vonica A. Brivanlou A.H. Cho K.R. Varmus H.E. EMBO J. 2005; 24: 73-84Crossref PubMed Scopus (268) Google Scholar). Although DKK1 plus Kremen2 resulted in strong Wnt signaling inhibition, SOST and Kremen2 did not exhibit synergy in antagonizing Wnt signaling (Fig. 4B). Thus, unlike DKK1, SOST does not cooperate with Kremen2 in Wnt signaling inhibition. In this study we demonstrated that SOST, the product of the gene mutated in sclerosteosis and Van Buchem disease, is an antagonistic ligand for the Wnt coreceptors LRP5 and LRP6 and an inhibitor of the canonical Wnt/β-catenin signaling in both mammalian cells and Xenopus embryos. These findings not only expand the repertoire of secreted antagonistic ligands that bind to the Wnt coreceptors LRP5 and LRP6 but also have implications for our understanding of sclerosteosis, Van Buchem disease, and bone density diseases associated with LRP5 mutations such as HBM syndrome and osteoporosis. It has become evident that the Wnt/β-catenin signaling mediated by LRP5 and LRP6 plays a central role in mammalian bone density regulation (13Johnson M.L. Harnish K. Nusse R. Van Hul W. J. Bone Miner. Res. 2004; 19: 1749-1757Crossref PubMed Scopus (183) Google Scholar). Loss-of-function mutations of LRP5 are associated with the recessive familial osteoporosis-pseudoglioma syndrome (38Gong Y. Slee R.B. Fukai N. Rawadi G. Roman-Roman S. Reginato A.M. Wang H. Cundy T. Glorieux F.H. Lev D. Zacharin M. Oexle K. Marcelino J. Suwairi W. Heeger S. Sabatakos G. Apte S. Adkins W.N. Allgrove J. Arslan-Kirchner M. Batch J.A. Beighton P. Black G.C. Boles R.G. Boon L.M. Borrone C. Brunner H.G. Carle G.F. Dallapiccola B. De Paepe A. Floege B. Halfhide M.L. Hall B. Hennekam R.C. Hirose T. Jans A. Juppner H. Kim C.A. Keppler-Noreuil K. Kohlschuetter A. LaCombe D. Lambert M. Lemyre E. Letteboer T. Peltonen L. Ramesar R.S. Romanengo M. Somer H. Steichen-Gersdorf E. Steinmann B. Sullivan B. Superti-Furga A. Swoboda W. van den Boogaard M.J. Van Hul W. Vikkula M. Votruba M. Zabel B. Garcia T. Baron R. Olsen B.R. Warman M.L. Cell. 2001; 107: 513-523Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar), whereas “gain-of-function” mutations of LRP5 are associated with HBM diseases (14Boyden L.M. Mao J. Belsky J. Mitzner L. Farhi A. Mitnick M.A. Wu D. Insogna K. Lifton R.P. N. Engl. J. Med. 2002; 346: 1513-1521Crossref PubMed Scopus (1345) Google Scholar, 15Little R.D. Carulli J.P. Del Mastro R.G. Dupuis J. Osborne M. Folz C. Manning S.P. Swain P.M. Zhao S.C. Eustace B. Lappe M.M. Spitzer L. Zweier S. Braunschweiger K. Benchekroun Y. Hu X. Adair R. Chee L. FitzGerald M.G. Tulig C. Caruso A. Tzellas N. Bawa A. Franklin B. McGuire S. Nogues X. Gong G. Allen K.M. Anisowicz A. Morales A.J. Lomedico P.T. Recker S.M. Van Eerdewegh P. Recker R.R. Johnson M.L. Am. J. Hum. Genet. 2002; 70: 11-19Abstract Full Text Full Text PDF PubMed Scopus (1096) Google Scholar). Intriguingly, all known LRP5 mutations from HBM families are single amino acid substitutions clustered in the first so-called YWTD β-propeller of the LRP5 extracellular domain (16Van Wesenbeeck L. Cleiren E. Gram J. Beals R.K. Benichou O. Scopelliti D. Key L. Renton T. Bartels C. Gong Y. Warman M.L. De Vernejoul M.C. Bollerslev J. Van Hul W. Am. J. Hum. Genet. 2003; 72: 763-771Abstract Full Text Full Text PDF PubMed Scopus (486) Google Scholar). The molecular mechanism by which these mutations cause the increase of LRP5/β-catenin signaling during bone growth remains unclear. For one particular LRP5 mutation, G171V (glycine 171 mutated to valine), decreased inhibition of LRP5 by DKK1 was suggested to account for increased LRP5 signaling (14Boyden L.M. Mao J. Belsky J. Mitzner L. Farhi A. Mitnick M.A. Wu D. Insogna K. Lifton R.P. N. Engl. J. Med. 2002; 346: 1513-1521Crossref PubMed Scopus (1345) Google Scholar, 39Zhang Y. Wang Y. Li X. Zhang J. Mao J. Li Z. Zheng J. Li L. Harris S. Wu D. Mol. Cell. Biol. 2004; 24: 4677-4684Crossref PubMed Scopus (142) Google Scholar). Because SOST is highly expressed in osteoblasts and osteocytes, and because a loss or down-regulation of SOST function in sclerosteosis and Van Buchem disease exhibits increased bone growth, SOST appears to be an endogenous negative regulator of bone growth, likely through the inhibition of LRP5 and LRP6 function. It will be interesting to examine whether LRP5 mutations associated with HBM disease result in compromised SOST inhibition of LRP5 function. SOST shares 36% identity with WISE, which was shown to bind LRP6 and to activate or inhibit Wnt signaling in a context-dependent manner (20Itasaki N. Jones C.M. Mercurio S. Rowe A. Domingos P.M. Smith J.C. Krumlauf R. Development. 2003; 130: 4295-4305Crossref PubMed Scopus (273) Google Scholar). These two closely related proteins share the “cysteine knot” domain that occupies the central part of proteins. One noticeable difference between SOST and WISE is that whereas SOST behaves exclusively as an antagonist for Wnt/LRP5/6 signaling in mammalian cells and Xenopus embryos, WISE alone can function as a weak agonist that activates β-catenin signaling to a limited extent (20Itasaki N. Jones C.M. Mercurio S. Rowe A. Domingos P.M. Smith J.C. Krumlauf R. Development. 2003; 130: 4295-4305Crossref PubMed Scopus (273) Google Scholar). The mechanism and function of this Wnt agonist activity of WISE remains unclear. It is also of interest to compare SOST with the prototypic LRP5/6 antagonist DKK1 (33Glinka A. Wu W. Delius H. Monaghan A.P. Blumenstock C. Niehrs C. Nature. 1998; 391: 357-362Crossref PubMed Scopus (1362) Google Scholar), which does not show any amino acid sequence similarity with SOST. Like DKK1 (24Semenov M.V. Tamai K. Brott B.K. Kuhl M. Sokol S. He X. Curr. Biol. 2001; 11: 951-961Abstract Full Text Full Text PDF PubMed Scopus (602) Google Scholar), SOST has the ability to disrupt Wnt1-induced Fz8-LRP6 complex formation in an in vitro assay, suggesting a potential mechanism for the observed SOST action. However, unlike DKK1, SOST inhibition of Wnt signaling is insensitive to the presence of Kremen2, a transmembrane protein that binds to DKK1 (22Mao B. Wu W. Davidson G. Marhold J. Li M. Mechler B.M. Delius H. Hoppe D. Stannek P. Walter C. Glinka A. Niehrs C. Nature. 2002; 417: 664-667Crossref PubMed Scopus (873) Google Scholar). Thus, although both are LRP5/6 ligands, the anti-Wnt activities of DKK1 and SOST can be differently modulated by other co-factors. Some studies suggest that SOST and WISE can bind BMP proteins and act as BMP antagonists (8Kusu N. Laurikkala J. Imanishi M. Usui H. Konishi M. Miyake A. Thesleff I. Itoh N. J. Biol. Chem. 2003; 278: 24113-24117Abstract Full Text Full Text PDF PubMed Scopus (210) Google Scholar, 9Winkler D.G. Sutherland M.K. Geoghegan J.C. Yu C. Hayes T. Skonier J.E. Shpektor D. Jonas M. Kovacevich B.R. Staehling-Hampton K. Appleby M. Brunkow M.E. Latham J.A. EMBO J. 2003; 22: 6267-6276Crossref PubMed Scopus (876) Google Scholar, 10van Bezooijen R.L. Roelen B.A. Visser A. van der Wee-Pals L. de Wilt E. Karperien M. Hamersma H. Papapoulos S.E. ten Dijke P. Lowik C.W. J. Exp. Med. 2004; 199: 805-814Crossref PubMed Scopus (693) Google Scholar, 40O'Shaughnessy R.F. Yeo W. Gautier J. Jahoda C.A. Christiano A.M. J. Investig. Dermatol. 2004; 123: 613-621Abstract Full Text Full Text PDF PubMed Scopus (35) Google Scholar, 41Laurikkala J. Kassai Y. Pakkasjarvi L. Thesleff I. Itoh N. Dev. Biol. 2003; 264: 91-105Crossref PubMed Scopus (210) Google Scholar). However, in Xenopus embryo experiments neither SOST nor WISE exhibits any detectable antagonist activities toward BMP, although both strongly affect Wnt signaling. Indeed, whereas prototypic BMP antagonists such as Noggin and Chordin induce neural tissue and trunk formation (via inhibition of BMP signaling), SOST and WISE failed to do so even when they were expressed at high levels (Fig. 1C) (20Itasaki N. Jones C.M. Mercurio S. Rowe A. Domingos P.M. Smith J.C. Krumlauf R. Development. 2003; 130: 4295-4305Crossref PubMed Scopus (273) Google Scholar). Thus, SOST and WISE may at best have weak BMP antagonist activities. Consistent with this notion, the binding affinities of SOST and WISE for BMPs are significantly weaker than those of Noggin and Chordin (8Kusu N. Laurikkala J. Imanishi M. Usui H. Konishi M. Miyake A. Thesleff I. Itoh N. J. Biol. Chem. 2003; 278: 24113-24117Abstract Full Text Full Text PDF PubMed Scopus (210) Google Scholar, 41Laurikkala J. Kassai Y. Pakkasjarvi L. Thesleff I. Itoh N. Dev. Biol. 2003; 264: 91-105Crossref PubMed Scopus (210) Google Scholar). Further studies will be required to clarify whether SOST and WISE only function as Wnt/LRP5/6 antagonists or whether they function as antagonists for both Wnt and BMP signaling. Nonetheless, given the specific bone growth phenotypes of loss of SOST function and LRP5 mutations, modulating SOST and LRP5 interaction may be a potential therapeutic strategy for the treatment of bone density diseases such as osteoporosis. We thank members of the Xi He laboratory for suggestions and help.

Referência(s)