THE CELL WALLS OF HIGHER PLANTS: THEIR COMPOSITION, STRUCTURE AND GROWTH
1958; Wiley; Volume: 33; Issue: 1 Linguagem: Inglês
10.1111/j.1469-185x.1958.tb01408.x
ISSN1469-185X
Autores Tópico(s)Polysaccharides and Plant Cell Walls
ResumoBiological ReviewsVolume 33, Issue 1 p. 53-102 THE CELL WALLS OF HIGHER PLANTS: THEIR COMPOSITION, STRUCTURE AND GROWTH D. H. NORTHCOTE, D. H. NORTHCOTE department of Biochemistry, CambridgeSearch for more papers by this author D. H. NORTHCOTE, D. H. NORTHCOTE department of Biochemistry, CambridgeSearch for more papers by this author First published: February 1958 https://doi.org/10.1111/j.1469-185X.1958.tb01408.xCitations: 45AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Adams, G. A. (1952). The constitution of a polyuronide hemicellulose from wheat straw. Canad. J. Chem. 30, 698. 10.1139/v52-083 CASWeb of Science®Google Scholar Adams, G. A. (1954). Constitution of a polyuronide hemicellulose from wheat leaf. Canad. J. Chem. 32, 186. 10.1139/v54-025 CASWeb of Science®Google Scholar Adams, G. A. (1955). Constitution of a hemicellulose from wheat bran. Canad. J. Chem. 33, 56. 10.1139/v55-009 CASWeb of Science®Google Scholar Adams, G. A. & Bishop, C. T. (1953). Polysaccharides associated with alpha-cellulose. Nature, Lond., 172, 28. 10.1038/172028a0 CASPubMedWeb of Science®Google Scholar Adams, G. A. & Bishop, C. T. (1955). Polysaccharides associated with α-cellulose. Tech. Pap. Pulp Pap. Ind., N. Y. 38, 672. CASGoogle Scholar Allsopp, A. & Misra, P. (1940). The constitution of the cambium, the new wood and the mature sapwood of the common ash, the common elm and the Scotch pine. Biochem. J. 34, 1078. 10.1042/bj0341078 CASPubMedGoogle Scholar Altermatt, H. A. & Neish, A. C. (1956). Further studies on the formation of cellulose and xylan from labeled monosaccharides in wheat plants. Canad. J. Biochem. Physiol. 34, 405. 10.1139/o56-042 CASPubMedWeb of Science®Google Scholar Anderson, D. B. & Kerr, T. (1938). Growth and structure of cotton fiber. Industr. Engng Chem. (Industr.) 30, 48. 10.1021/ie50337a010 CASPubMedGoogle Scholar Anderson, E. (193536). The isolation of pectic substances from wood. J. biol. Chem. 112, 531. Google Scholar Anderson, E. (1946). The isolation of pectic substances from soft woods. J. biol. Chem. 165, 233. CASPubMedWeb of Science®Google Scholar Anderson, E., Kaster, R. B. & Seeley, M. G. (1942). Hemicelluloses and pectic materials from cotton wood, Populus Macdougali. J. biol. Chem. 144, 767. CASGoogle Scholar Anderson, E. & Pigman, W. W. (1947). A study of the inner bark and cambial zone of black spruce (Picea mariana B.S.P.). Science 105, 601. 10.1126/science.105.2736.601-a CASPubMedWeb of Science®Google Scholar Anderson, E., Seigle, L. W., Krzarich, P. W., Richards, L. & Marteny, W. W. (1937). The isolation of pectic substances from wood. II.. J. biol. Chem. 121, 165. CASGoogle Scholar Anderson, E., Wise, L. E. & Ratliff, E. K. (1954). Note on the chemistry of the cambial zone of black spruce. Tech. Pap. Pulp Pap. Ind., N. Y. 37, 422. CASWeb of Science®Google Scholar Anthis, A. (1956). Some carbohydrate linkages in slash pine α-cellulose. jTech.. Pap. Pulp Pap. Ind., N. Y., 39, 401. CASGoogle Scholar Aspinall, G. O. & Carter, M. E. (1956). The constitution of a xylan from Norway spruce (Picea excelsa). J. chem. Soc. p. 3744. Google Scholar Aspinall, G. O. & Hirst, E. L. & Mahomed, R. S. (1954). Hemicellulose A of beechwood (Fagus sylvatica). J. chem. Soc. p. 1734. Google Scholar Aspinall, G. O., Hirst, E. L., Moody, R. W. & Percival, E. G. V. (1953). The hemicellulose of esparto grass (Stipa tenacissima L.). The arabinose-rich fraction. J. chem. Soc. p. 1631. Google Scholar Aspinall, G. O., Hirst, E. L., Percival, E. G. V. & Williamson, I. R. (1953). The mannans of ivory nut (Phytelephas macrocarpa). Part I. The methylation of mannan A and mannan B. J. chem. Soc. p. 3184. Google Scholar Aspinall, G. O. & Mahomed, R. S. (1956). The constitution of a wheat-straw xylan. J. chem. Soc. p. 1731. Google Scholar Aspinall, G. O. & Wilkie, K. C. B. (1956). The constitution of an oat-straw xylan. J. chem. Soc. p. 1072. Google Scholar Astbury, W. T., Preston, R. D. & Norman, A. G. (1935). X-ray examination of the effect of removing non-cellulosic constituents from vegetable fibres. Nature, Lond. 136, 391. 10.1038/136391b0 CASWeb of Science®Google Scholar Asunmaa, S. (1955). Morphology of middle lamella of Swedish spruce (Picea excelsa). Svensk Papp-Tidn. 58, 308. CASGoogle Scholar Asunmaa, S. & Lange, P. W. (1953). Esterification of the carbohydrates in the plant cell wall with p-phenylazobenzoyl chloride for microspectrographic investigation. Svensk Papp-Tidn. 56, 85. CASGoogle Scholar Asunmaa, S. & Lange, P. W. (1954). Distribution of 'cellulose' and hemicellulose in the cell wall of spruce, birch and cotton. Svensk Papp-Tidn. 57, 498. CASGoogle Scholar Bailey, A. J. (1936a). Lignin in Douglas fir. Composition of the middle lamella. Industr. Engng Chem. (Anal.) 8, 52. 10.1021/ac50099a024 CASGoogle Scholar Bailey, A. J. (1936b). Lignin in Douglas fir. The pentosan content of the middle lamella. Industr. Engng Chem. (Anal.) 8, 389. 10.1021/ac50103a037 CASGoogle Scholar Bailey, I. W. (1919). Phenomena of cell division in the cambium of arborescent gymnosperms and their cytological significance. Proc. nat. Acad. Sci., Wash. 5, 283. 10.1073/pnas.5.7.283 CASPubMedWeb of Science®Google Scholar Bailey, I. W. (1920). The formation of the cell plate in the cambium of the higher plants. Proc. nat. Acad. Sci., Wash 6, 197. 10.1073/pnas.6.4.197 CASPubMedWeb of Science®Google Scholar Bailey, I. W. (1940). The walls of plant cells. Publ. Amer. Ass. Adv. Sci. no. 14, 31. Google Scholar Bailey, I. W. (1952). Biological processes in the formation of wood. Science 115, 255. 10.1126/science.115.2984.255 PubMedWeb of Science®Google Scholar Bailey, I. W. & Kerr, T. (1935). The visible structure of the secondary wall and its significance in physical and chemical investigations of tracheary cells and fibers. J. Arnold Arbor. 16, 273. CASGoogle Scholar Bailey, I. W. & Vestal, M. (1937). The orientation of cellulose in secondary wall of tracheary cells. J. Arnold Arbor. 18, 187. Google Scholar Balashov, V. & Preston, R. D. (1955). Fine structure of cellulose and other microfibrillar substances. Nature, Lond. 176, 64. 10.1038/176064a0 CASWeb of Science®Google Scholar Ball, D. H., Jones, J. K. N., Nicholson, W. H. & Painter, T. J. (1956). The structure of the hemicelluloses of loblolly pine. Tech. Pap. Pulp Pap. Ind., N. Y. 39, 438. CASGoogle Scholar Balls, W. L. & Hancock, H. A. (1922). Further observations on cell wall structure as seen in cotton hairs. Proc. roy. Soc. B., 93, 426. 10.1098/rspb.1922.0030 CASGoogle Scholar Barghoorn, E. S. (1949). Degradation of plant remains in organic sediments. Bot. Mus. Leaft. Harv. 14, no. 1. Google Scholar Baur, L. & Link, K. P. (1935). Polygalacturonic acid-methyl-glycosides derived from Ehrlich's 'Pektolsäure' and 'Pektolactonsäure'. J. biol. Chem. 109, 293. CASGoogle Scholar Beaven, G. H., Hirst, E. L. & Jones, J. K. N. (1939). Citrus araban. J. chem. Soc. p. 1865. Google Scholar Bennett, E. (1947). Preparation of holocellulose from nonwoody plant material. Analyt. Chem. 19, 215. 10.1021/ac60003a027 CASWeb of Science®Google Scholar Bennett, E. (1948). Estimation of hemicelluloses in holocellulose from nonwoody plant material. Analyt. Chem. 20, 642. 10.1021/ac60019a014 CASWeb of Science®Google Scholar Berkley, E. E. & Kerr, T. (1946). Structure and plasticity of undried cotton fibers. Industr. Engng Chem. (Industr.) 38, 304. 10.1021/ie50435a020 CASWeb of Science®Google Scholar Bertrand, G. (1899). Sur la présence de la mannocellulose dans le tissu ligneux des plantes gymnospermes. C.R. Acad. Sci., Paris 129, 1025. CASGoogle Scholar Binger, H. P. & Norman, A. G. (1956). Acid resistance of cell wall pentosans. Tech. Pap. Pulp Pap. Ind., N. Y. 39, 430. CASGoogle Scholar Bishop, C. T. (1953a). Isolation of the aldobiuronic acid, 3-(xylopyranosyl)-α-D glucuronopyranoside, from wheat straw hemicellulose and synthesis of its β-isomer. Canad. J. Chem. 31, 134. 10.1139/v53-019 CASWeb of Science®Google Scholar Bishop, C. T. (1953b). Crystalline xylans from straws. Canad. J. Chem. 31, 193. 10.1139/v53-108 CASWeb of Science®Google Scholar Bishop, C. T. (1956). Structure of a trisaccharide from wheat straw xylan. J. Amer. chem. Soc. 78, 2840. 10.1021/ja01593a053 CASWeb of Science®Google Scholar Borgin, G. L. (1949). Molecular properties of water-soluble polysaccharides from western larch. J. Amer. chem. Soc. 71, 2247. 10.1021/ja01174a504 CASWeb of Science®Google Scholar Bosshard, H.H. (1952). Elektronenmikroskopische Untersuchungen im Holz von Fraxinus excelsior L. Ber. schweiz. bot. Ges. 62, 482. Google Scholar Bouveng, H. & Lindberg, B. (1956). Products from the mild hydrolysis of the arabogalactan from Larix occidentalis. Acta chem. Scand. 10, 1515. 10.3891/acta.chem.scand.10-1515 CASWeb of Science®Google Scholar Bradway, K. E. (1954). An investigation of haze in cellulose acetates made from wood pulps. Tech. Pap. Pulp Pap. Ind., N. Y. 37, 440. CASWeb of Science®Google Scholar Brauns, F. E. (1939). Native lignin. Its isolation and methylation. J. Amer. chem. Soc. 61, 2120. 10.1021/ja01877a043 CASGoogle Scholar Brauns, F. E. (1945). A new polysaccharide from black spruce (Picea mariana). Science, 102, 155. 10.1126/science.102.2641.155 CASPubMedWeb of Science®Google Scholar Brauns, F. E. (1952). Chemistry of lignin. New York. Google Scholar Brown, S. A. & Neish, A. C. (1954). The biosynthesis of cell wall carbohydrates. Glucose-C14 as a cellulose precursor in wheat plants. Canad. J. Biochem. Physiol. 32, 170. 10.1139/o54-019 CASPubMedWeb of Science®Google Scholar Brown, S. A. & Neish, A. C. (1955). Shikimic acid as a precursor in lignin biosynthesis. Nature, Lond. 175, 688. 10.1038/175688a0 CASPubMedWeb of Science®Google Scholar Buchanan, M. A., Brauns, F. E. & Leaf, R. L. (1949). Native lignin. II. Native aspen lignin. J. Amer. chem. Soc. 71, 1297. 10.1021/ja01172a043 CASPubMedWeb of Science®Google Scholar Burkhart, B., Baur, L. & Link, K. P. (1934). A micromethod for the determination of uronic acids. J. biol. Chem. 104, 171. CASWeb of Science®Google Scholar Buston, H. W. (1934). The polyuronide constituents of forage grasses. Biochem. J. 28, 1028. 10.1042/bj0281028 CASPubMedWeb of Science®Google Scholar Buston, H. W. (1935). Observations on the nature, distribution and development of certain cellwall constituents of plants. Biochem. J. 29, 196. 10.1042/bj0290196 CASPubMedWeb of Science®Google Scholar Cabib, E. & Leloir, L. F. (1954). Guanosine diphosphate mannose. J. biol. Chem. 206, 779. CASPubMedWeb of Science®Google Scholar Campbell, W. G., Hirst, E. L. & Jones, J. K. N. (1948). The α-galactan of larch wood. (Larix decidua). J. chem. Soc. p. 774. Google Scholar Caputto, R., Leloir, L. F., Cardini, C. E. & Paladini, A. C. (1950). Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. biol. Chem. 184, 333. CASPubMedWeb of Science®Google Scholar Carlier, A. & Buffel, K. (1955). Polysaccharide changes in the cell walls of water absorbing potato tuber tissue in relation to auxin action. Acta bot. Neerl. 4, 551. 10.1111/j.1438-8677.1955.tb00354.x Google Scholar Carré, M. H. & Horne, A. S. (1927). An investigation of the behaviour of pectic materials in apples and other plant tissues. Ann. Bot., Lond. 41, 193. CASWeb of Science®Google Scholar Chanda, S. K., Hirst, E. L., Jones, J. K. N. & Percival, E. G. V. (1950). The constitution of xylan from esparto grass (Stipa tenacissima L.). J. chem. Soc. p. 1289. Google Scholar Chanda, S. K., Hirst, E. L. & Percival, E. G. V. (1951). The constitution of a pear cell-wall xylan. J. chem. Soc. p. 1240. Google Scholar Chow, K. Y. (1946). A comparative study of the structure and chemical composition of tension wood and normal wood in beech (Fagus sylvatica L.). Forestry 20, 62. 10.1093/forestry/20.1.62 Google Scholar Clark, E. P. (1929). Studies on gossypol. VI. The action of boiling hydriodic acid as used in the Zeisel method upon gossypol and some of its derivatives. A semi-micro Zeisel methoxyl method. J. Amer. chem. Soc. 51, 1479. 10.1021/ja01380a026 CASGoogle Scholar Corey, A. B. & Gray, H. Le B. (1924). Notes on the preparation of standard cellulose. Industr. Engng Chem. 16, 853, 1130. 10.1021/ie50176a036 CASWeb of Science®Google Scholar Creighton, R. H. J., Gibbs, R. D. & Hibbert, H. (1944). Alkaline nitrobenzene oxidation of plant materials and its application to taxonomic classification. J. Amer. chem. Soc. 66, 32. 10.1021/ja01229a010 CASGoogle Scholar Creighton, R. H. J. & Hibbert, H. (1944). Alkaline nitrobenzene oxidation of corn stalks. Isolation of p-hydroxybenzaldehyde. J. Amer. chem. Soc. 66, 37. 10.1021/ja01229a011 CASGoogle Scholar Cross, C. F. & Bevan, E. J. (1903). Researches on cellulose. London. Google Scholar Dadswell, H. E. & Wardrop, A. B. (1955). The structure and properties of tension wood. Holzforschung 9, 97. 10.1515/hfsg.1955.9.4.97 CASGoogle Scholar Das, D. B., Mitra, M. K. & Wareham, J. F. (1953). Association of glucose, arabinose and xylose in jute. Nature, Lond. 171, 613. 10.1038/171613b0 CASWeb of Science®Google Scholar Das Gupta, P. C. & Sarkar, P. B. (1954). Structure of jute hemicellulose. Textile Res. J. 24, 1071. 10.1177/004051755402401207 CASWeb of Science®Google Scholar Dorée, C. (1947). The methods of cellulose chemistry, 2nd ed. London . Web of Science®Google Scholar Dutton, G. G. S. & Smith, F. (1956a). The constitution of the hemicelluloses of western hemlock (Tsuga heterophylla). I. Determination of composition and identification of 2-O-(4-O-methyl-D-glucopyranosiduronic acid)-D-xylose. J. Amer. chem. Soc. 78, 2505. 10.1021/ja01592a048 CASWeb of Science®Google Scholar Dutton, G. G. S. & Smith, F. (1956b). The constitution of the hemicellulose of western hemlock (Tsuga heterophylla). II. Hydrolysis of the methylated hemicellulose. J. Amer. chem. Soc. 78, 3744. 10.1021/ja01596a053 CASWeb of Science®Google Scholar Eberhardt, G. (1956). On the mechanism of the biogenesis of methyl p-methoxycinnamate and its possible relation to lignification. J. Amer. chem. Soc. 78, 2832. 10.1021/ja01593a050 CASWeb of Science®Google Scholar Eberhardt, G. & Schubert, W. J. (1956). Evidence for the mediation of shikimic acid in the biogenesis of lignin building stones. J. Amer. chem. Soc. 78, 2835. 10.1021/ja01593a051 CASWeb of Science®Google Scholar Edelman, J., Ginsburg, V. & Hassid, W. Z. (1955). Conversion of monosaccharides to sucrose and cellulose in wheat seedlings. J. biol. Chem. 213, 843. CASPubMedWeb of Science®Google Scholar Ehrenthal, I., Montgomery, R. & Smith, F. (1954). The carbohydrates of Gramineae. II. The constitution of the hemicelluloses of wheat straw and corn cobs. J. Amer. chem. Soc. 76, 5509. 10.1021/ja01650a073 CASWeb of Science®Google Scholar Ehrlich, F. (1936). Pektin. Abderhalden's Handbuch der biologischen Arbeitsmethoden, 1, 11, 1503. Berlin. Google Scholar Ehrlich, F. & Schubert, F. (1926). Über die Chemie der Inkrusten des Flachses. Biochem. Z. 169, 13. CASWeb of Science®Google Scholar Ehrlich, F. & Schubert, F. (1928). Über Tetra-Araban und seine Beziehung zur Tetragalakturonsäure, dem Hauptkomplex der Pektinstoffe. Biochem. Z. 203, 343. CASGoogle Scholar Ehrlich, F. & Sommerfeld, R. V. (1926). Die Zusammensetzung der Pektinstoffe der Zuckerrübe. Biochem. Z. 168, 263. CASGoogle Scholar Elliot, E. (1951). Formation of new cell walls in cell division. Nature, Lond. 168, 1089. 10.1038/1681089a0 CASPubMedWeb of Science®Google Scholar Emerton, H. W. & Goldsmith, V. (1956). The structure of the outer secondary wall of pine tracheids from kraft pulps. Holzforschung, 10, 108. CASGoogle Scholar Fellenberg, Th. v. (1918). Über die Konstitution der Pektinkörper. Biochem. Z. 85, 118. Google Scholar Freudenberg, K. (1939). Polysaccharides and lignin. Annu. Rev. Biochem. 8, 81. 10.1146/annurev.bi.08.070139.000501 CASGoogle Scholar Freudenberg, K. & Ploetz, T. (1940). Die quantitative Bestimmung des Lignins. Ber. dtsch. chem. Ges. 73B, 754. 10.1002/cber.19400730706 CASGoogle Scholar Freudenberg, K., Sohns, F., Dürr, W. & Niemann, C. (1931). Über Lignin, Coniferylalkohol und Saligenin. Cellulose-Chem.. p. 263. Google Scholar Frey-Wyssling, A. (193637a). Röntgenometrische Vermessung der submikroskopischen Räurne in Gerüstsubstanzen. Protoplasma 27, 372. 10.1007/BF01599405 CASGoogle Scholar Frey-Wyssling A. (193637b). Ultramikroskopische Untersuchung der submikroskopischen Räume in Gerüstsubstanzen. Protoplasma 27, 563. 10.1007/BF01599439 CASGoogle Scholar Frey-Wyssling, A. (1939). The submicroscopic structure of cell walls. Sci. Progr. twent. Cent. 34, 249. Google Scholar Frey-Wyssling, A. (1950). Physiology of cell wall growth. Annu. Rev. Pl. Physiol. 1, 169. 10.1146/annurev.pp.01.060150.001125 Web of Science®Google Scholar Frey-Wyssling, A. (1951). Über den inneren Aufbau der Cellulosemikrofibrillen. Makromol. chem. 6, 7. 10.1002/macp.1951.020060101 CASGoogle Scholar Frey-Wyssling, A. (1952). Growth of plant cell walls. Symp. Soc. exp. Biol. 6, 320. Google Scholar Frey-Wyssling, A. (1954). The fine structure of cellulose microfibrils. Science 119, 80. 10.1126/science.119.3081.80 CASPubMedWeb of Science®Google Scholar Frey-Wyssling, A. (1955a). On the crystal structure of cellulose. I.. Biochem. biophys. Acta. 18, 166. 10.1016/0006-3002(55)90039-1 CASPubMedWeb of Science®Google Scholar Frey-Wyssling, A. (1955b). Plant cytology and the electron microscope. Endeavour 14, 34. CASPubMedWeb of Science®Google Scholar Frey-Wyssling, A. & Mühlethaler, K. (1951). The fine structure of cellulose. Fortschr. Chem. org. Naturst. 8, 1. CASGoogle Scholar Frey-Wyssling, A. & Stecher, H. (1951). Das Flächenwachstum der pflanzlichen Zellwände. Experientia 7, 420. 10.1007/BF02147530 CASPubMedWeb of Science®Google Scholar Fuller, K. W. & Northcote, D. H. (1956). A micro method for the separation and determination of polysaccharides by zone electrophoresis. Biochem. J. 64, 657. 10.1042/bj0640657 CASPubMedWeb of Science®Google Scholar Ginsburg, V., Stumpf, P. K. & Hassid, W. Z. (1956). The isolation of uridine diphosphate derivatives of D-glucose, D-galactose, D-xylose and L-arabinose from mung bean seedlings. J. biol. Chem. 223, 977. CASPubMedWeb of Science®Google Scholar Glaser, L. & Brown, D. H. (1957). The enzymic synthesis of chitin by extracts of Neurospora crassa. Biochem. biophys. Acta. 23, 449. 10.1016/0006-3002(57)90361-X CASPubMedWeb of Science®Google Scholar Gralén, N. & Svedberg, T. (1943). Molecular weight of native cellulose. Nature, Lond. 152, 625. 10.1038/152625a0 CASGoogle Scholar Greathouse, G. A. (1953). Biosynthesis of C14 -specifically labeled cotton cellulose. Science 117, 553. 10.1126/science.117.3047.553 CASPubMedWeb of Science®Google Scholar Greathouse, G. A. & Minor, F., Shirk, H. G., Schwartz, A. M. & Harris, M. (1952). The biosynthesis of C14 specifically labeled cellulose of Acetobacter xylinum. 11eCongr. int. Biochem., Paris, Resumés, p. 81. Google Scholar Griffioen, K. (1938). On the origin of lignin in the cell wall. Rec. Trav. bot. neérl. 35, 322. Google Scholar Gross, S. T. & Clark, G. L. (1938). A test of the alternative structures proposed for cellulose. Z. Kristallogr. 99, 357. CASGoogle Scholar Gustafsson, C. (1956). Hemicellulose in Finnish wood species. Paperi ja Puu 38, 383. CASGoogle Scholar Gustafesson, C., Sundman, J., Petterson, S. & Lindh, T. (1951). Determination of carbohydrates by means of paper partition chromatography. Paperi ja Puu 33, 1. Google Scholar Hägglund, E., Lindberg, B. & McPherson, J. (1956). Dimethyl-sulphoxide, a solvent for hemicelluloses. Acta chem. Scand. 10, 1160. 10.3891/acta.chem.scand.10-1160 Web of Science®Google Scholar Hailwood, A. J. & Horrobin, S. (1946). Absorption of water by polymers: analysis in terms of a simple model. Trans. Faraday Soc. 42B, 84. 10.1039/tf946420b084 CASGoogle Scholar Hamilton, J. K., Kircher, H. W. & Thompson, N. S. (1956). The nature of the hemicelluloses associated with wood cellulose from western hemlock (Tsuga heterophylla). J. Amer. chem. Soc. 78, 2508. 10.1021/ja01592a049 CASWeb of Science®Google Scholar Harlow, W. M. (1932). Contributions to the chemistry of the plant cell wall. VI. Further studies on the location of lignin in the cell walls of wood. Amer. J. Bot. 19, 729. 10.1002/j.1537-2197.1932.tb08855.x Google Scholar Harlow, W. M. (1939). Contributions to the chemistry of the plant cell wall. IX. Further studies on the location of lignin, cellulose, and other components in woody cell walls. Paper Tr. J. 109, no. 18, 38. CASGoogle Scholar Henglein, F. A. (1955). Pektine. Ed. Paech, K. & Tracey, M. V. Modern methods of plant analysis, Berlin, 2, 226. Google Scholar Henglein, G. A. & Schneider, G. (1936). Über die Veresterung von Pektinstoffen. Ber. dtsch. chem. Ges. 69B, 309. 10.1002/cber.19360690218 CASGoogle Scholar Hengstenberg, J. & Mark, H. (1928). Über Form und Grösse der Mizelle von Zellulose und Kautschuk. Z. Kristallogr. 69, 271. CASWeb of Science®Google Scholar Hess, K. & Lüdtke, M. (1928). Isolierung von Mannan und Xylan aus Sulfitzellstoff (Fichte). Liebigs Ann. 466, 18. 10.1002/jlac.19284660103 CASWeb of Science®Google Scholar Heuser, E. (1952). The present status of the chemistry of cellulose. Tech. Pap. Pulp Pap. Ind., N. Y. 35, 481. CASWeb of Science®Google Scholar Hill, R., Northocote, D. H. & Davenport, H. E. (1953). Active chloroplast preparations from Chlorella pyrenoidosa. Nature. Lond. 172, 948. 10.1038/172948a0 CASWeb of Science®Google Scholar Hirst, E. L. (1942). Recent progress in the chemistry of the pectic materials and plant gums. J. chem. Soc. p. 70. Google Scholar Hirst, E. L. (1955). Some problems in the chemistry of the hemicelluloses. J. chem. Soc. p. 2974. Google Scholar Hirst, E. L. & Jones, J. K. N. (1938). The araban and pectic acid of the peanut. J. chem. Soc. p. 496. Google Scholar Hirst, E. L. & Jones, J. K. N. (1939a). Isolation of an araban from the carbohydrate constituents of the peanut. J. chem. Soc. p. 452. Google Scholar Hirst, E. L. & Jones, J. K. N. (1939b). Composition of apple pectin and the molecular structure of the araban component of apple pectin. J. chem. Soc. p. 454. Google Scholar Hirst, E. L. & Jones, J. K. N. (1946). The chemistry of pectic materials. Advanc. carbohyd. Chem. 2, 235. 10.1016/S0096-5332(08)60012-0 CASWeb of Science®Google Scholar Hirst, E. L. & Jones, J. K. N. (1947). The structure of the araban from Arachis hypogea. J. chem. Soc. p. 1221. Google Scholar Hirst, E. L., Jones, J. K. N. & Campbell, W. G. (1941). The σ-galactan of larch wood. Nature, Lond. 147, 25. 10.1038/147025b0 CASGoogle Scholar Hirst, E. L., Jones, J. K. N. & Walder, W. O. (1947). Pectic substances. Part VII. The constitution of the galactan from Lupinus albus. J. chem. Soc. p. 1225. Google Scholar Hocevar, B. J. & Northcote, D. H. (1957). Preparative column electrophoresis of polysaccharides. Nature, Lond. 179, 488. 10.1038/179488a0 CASPubMedWeb of Science®Google Scholar Hock, C. W. (1952). The fibrillate structure of natural cellulose. J. polym. Sci. 8, 425. 10.1002/pol.1952.120080406 CASWeb of Science®Google Scholar Hock, C. W. & Harris, M. (1940). Microscopic examination of cotton fibers in cuprammonium hydroxide solutions. J. Res. nat. Bur. Stand. 24, 743. 10.6028/jres.024.044 CASGoogle Scholar Hodge, A. J. & Wardrop, A. B. (1950). The electron microscope investigation of the cell wall organization of conifer tracheids and conifer cambium. Aust. J. sci. Res. B3, 265. Google Scholar Horio, M., Imamura, R. & Inagaki, H. (1955). A study of light scattering of xylan. Tech. Pap. Pulp Pap. Ind., N. Y. 38, 216. CASGoogle Scholar Houwink, A. L. & Roelofsen, P. A. (1954). Fibrillar architecture of growing plant cell walls. Acta bot. Neerl. 3, 385. 10.1111/j.1438-8677.1954.tb00300.x Web of Science®Google Scholar Husemann, E. J. (1939). Über die Konstitution von Holzpolyosen. Naturwissenschaften 27, 595. 10.1007/BF01496168 CASGoogle Scholar Husemann, E. J. (1940). Constitution of wood polyoses. J. prakt. Chem. 155, 13. 10.1002/prac.19401550102 CASWeb of Science®Google Scholar van Iterson, G. (1935). The formation of the cell-wall. Development of the primary cell-wall. Proc. 6th int. bot. Congr., Amsterdam 2, 291. Google Scholar van Iterson, G. (193637). A few observation on the hairs of the stamens of Tradescantia virginica. Protoplasma 27, 190. 10.1007/BF01599374 Google Scholar Jansen, E. F., MacDonnell, L. R. & Ward, W. H. (1949). The minimum size for the structural unit of pectin. Arch. Biochem. 21, 149. CASPubMedWeb of Science®Google Scholar Jayme, G. & Harders-Steinhauser, M. (1953). Zeigholz und seine Auswirkungen in Pappel- und Weidenholz. Holzforschung 7, 39. 10.1515/hfsg.1953.7.2-3.39 CASGoogle Scholar Jermyn, M. A. (1955). Cellulose and hemicelluloses. Ed. Paech, K. and Tracey, M. V.. Modern methods of plant analysis 2, 197. Berlin. Google Scholar Jermyn, M. A. & Isherwood, F. A. (1956). Changes in the cell wall of the pear during ripening. Biochem. J. 64, 123. 10.1042/bj0640123 CASPubMedWeb of Science®Google Scholar Jones, J. K. N. (1953). Larch σ-galactan. Part II. The isolation of 3-β-L arabopyranosyl L-arabinose. J. chem. Soc. p. 1672. Google Scholar Jones, J. K. N. & Painter T. J. (1957). The hemicelluloses of loblolly pine (Pinus taèda) wood. Part I. The isloation of fine oligosaccharide fragments. J. chem. Soc. p. 669. Google Scholar Jones, J. K. N. & Reid, W. W. (1954). The structrue of the oligosaccharides produced by the enzymic breakdown of pectic acid. Part 1. J. chem. Soc. p. 1361. Google Scholar Jones, J. K. N. & Reid, W. W. (1955). The structue of the oligosaccharides produced by the enzymic breakdown of pectic acid. Part II J. chem. Soc. p. 1890. Google Scholar Jones, J. K. N. & Wise, L. E. (1952a). The hemicelluloses present in aspen wood (Populus tremuloides). Part I. J. chem. Soc. p. 2750. Google Scholar Jones, J. K. N. & Wise, L. E. (1952b). The hemicelluloses present in aspen wood (Populus tremuloides). Part II. J. chem. Soc. p. 3389. Google Scholar Kerr, T. (1951). Growth and structure of the primary wall. Plant growth substances, ed. F. Skoog. Wisconsin, P. 37. Google Scholar Kerr, T. & Bailey, I. W. (1934). Structure, optical properties and chemical composition of the
Referência(s)