Thymic heterotypic cellular complexes in gene-targeted mice with defined blocks in T cell development and adhesion molecule expression
1998; Wiley; Volume: 28; Issue: 9 Linguagem: Inglês
10.1002/(sici)1521-4141(199809)28
ISSN1521-4141
AutoresAntonio Oliveira-dos-Santos, Josef Penninger, Theresa Rieker–Geley, Goichi Matsumoto, Tak M. Mak, Georg Wick,
Tópico(s)Immune Cell Function and Interaction
ResumoEuropean Journal of ImmunologyVolume 28, Issue 9 p. 2882-2892 ArticleFree Access Thymic heterotypic cellular complexes in gene-targeted mice with defined blocks in T cell development and adhesion molecule expression Antonio J. Oliveira-dos-Santos, Antonio J. Oliveira-dos-Santos Institute for General and Experimental Pathology Medical School, University of Innsbruck, Innsbruck, AustriaSearch for more papers by this authorJosef M. Penninger, Josef M. Penninger Amgen Institute and Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, CanadaSearch for more papers by this authorTheresa Rieker-Geley, Theresa Rieker-Geley Institute for General and Experimental Pathology Medical School, University of Innsbruck, Innsbruck, AustriaSearch for more papers by this authorGoichi Matsumoto, Goichi Matsumoto Amgen Institute and Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, CanadaSearch for more papers by this authorTak M. Mak, Tak M. Mak Amgen Institute and Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, CanadaSearch for more papers by this authorGeorg Wick, Georg Wick Institute for General and Experimental Pathology Medical School, University of Innsbruck, Innsbruck, AustriaSearch for more papers by this author Antonio J. Oliveira-dos-Santos, Antonio J. Oliveira-dos-Santos Institute for General and Experimental Pathology Medical School, University of Innsbruck, Innsbruck, AustriaSearch for more papers by this authorJosef M. Penninger, Josef M. Penninger Amgen Institute and Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, CanadaSearch for more papers by this authorTheresa Rieker-Geley, Theresa Rieker-Geley Institute for General and Experimental Pathology Medical School, University of Innsbruck, Innsbruck, AustriaSearch for more papers by this authorGoichi Matsumoto, Goichi Matsumoto Amgen Institute and Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, CanadaSearch for more papers by this authorTak M. Mak, Tak M. Mak Amgen Institute and Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, CanadaSearch for more papers by this authorGeorg Wick, Georg Wick Institute for General and Experimental Pathology Medical School, University of Innsbruck, Innsbruck, AustriaSearch for more papers by this author First published: 28 March 2006 https://doi.org/10.1002/(SICI)1521-4141(199809)28:09 3.0.CO;2-1Citations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Thymocytes form unique multicellular complexes with epithelial cells (thymic nurse cells, TNC) and rosettes (ROS) with macrophages, epithelial cells and dendritic cells. To investigate the role of differentiation checkpoints in the formation of the thymic heterotypic complexes in vivo, we used mutant mice which have genetically defined blocks at early and late stages of T cell development. We show that RAG-1−/−, TCRβ−/−, and p56lck−/− mice lack thymocyte ROS formation with epithelial cells, macrophages, or dendritic cells. TNC formation was not affected by TCRβ and p56lck gene mutations but partially decreased in RAG-1−/− mice, indicating that TNC are the earliest thymocyte-stromal cell complexes formed in development, whereas ROS only appear after thymocytes have rearranged and expressed a functional TCRβ chain. Genetic blocks in CD8 lineage commitment (CD8−/− and IFN regulatory factor-1−/− mice) and positive and negative T cell selection (CD45−/−, TCRα−/−, and CD30−/− mice) did not affect thymocyte-stromal cell complexes. Surprisingly, CD4−/− mice, but not MHC class II−/− mice, had significantly reduced numbers of TNC and ROS, in particular, a severe defect in ROS formation with thymic dendritic cells. The CD4−/− block in ROS and TNC formation was rescued by the introduction of a human CD4 transgene. Moreover, we show that the adhesion receptors CD44 and LFA-1 cooperate in the formation of the thymic microenvironment. These results provide genetic evidence on the role of defined stages in T cell development and adhesion molecules on thymocyte/stromal cell interactions in vitro. References 1 Boyd, R. L., Tucek, C. L., Godfrey, D. I., Izon, D. J., Wilson, T. J., Davidson, N. J., Bean, A. G., Ladyman, H. M., Ritter, M. A. and Hugo, P., The thymic microenvironment. Immunol. Today 1993. 14: 455– 459. 2 Mittrücker, H.-W., Pfeffer, K., Schmits, R. and Mak, T. W., T-lymphocyte development and function in genetargeted mutant mice. Immunol. Rev. 1995. 148: 115– 150. 3 van Ewijk, W., T-cell differentiation is influenced by thymic microenvironments. Annu. Rev. Immunol. 1991. 9: 591– 615. 4 Anderson G., Moore, N. C., Owen, J. J. T. and Jenkinson, E. J., Cellular interactions in thymocyte development. Annu. Rev. Immunol. 1996. 14: 73– 99. 5 Scollay, R. and Godfrey, D. I., Thymic emigration: conveyor belts or lucky dips? Immunol. Today 1995. 16: 268– 273. 6 Wekerle, H., Ketelsen, U.-P. and Ernst, M., Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization. J. Exp. Med. 1980. 151: 925– 944. 7 de Waal Malefijt, R., Leene, W., Roholl, P. J., Wormmeester, J. and Hoeben, K. A., T cell differentiation within thymic nurse cells. Lab. Invest. 1986. 55: 25– 34. 8 McCormack, J. E., Wade, T., Morales, H., Kappler, J. and Marrack, P., Analysis of class II MHC structure in thymic nurse cells. Cell. Immunol. 1991. 138: 413– 422. 9 Kyewski, B. A., Fathman, C. G. and Kaplan, H. S., Intrathymic presentation of circulating nonmajor histocompatibility complex antigens. Nature 1984. 308: 196– 199. 10 Lorenz, R. G. and Allen, P. M., Thymic cortical epithelial cells can present self-antigens in vivo. Nature 1989. 337: 560– 562. 11 Penninger, J., Rieker, T., Romani, N., Klima, J., Salvenmoser, W., Dietrich, H., Stössel, H. and Wick, G., Ultrastructural analysis of thymic nurse cell epithelium. Eur. J. Immunol. 1994. 24: 222– 228. 12 Faas, S. J., Rothstein, J. L., Kreider, B. L., Rovera, G. and Knowles, B. B., Phenotypically diverse mouse thymic stromal cell lines which induce proliferation and differentiation of hematopoietic cells. Eur. J. Immunol. 1993. 23: 1201– 1214. 13 Penninger, J., Hála, K. and Wick, G., Intrathymic nurse cell lymphocytes can induce a specific graft-versus-host reaction. J. Exp. Med. 1990. 172: 521– 529. 14 Wick, G., Rieker, T. and Penninger, J., Thymic nurse cells: a site for positive selection and differentiation of T cells. Curr. Top. Microbiol. Immunol. 1991. 173: 99– 105. 15 Vakharia, D. D. and Mitchison, N. A., Helper T cell activity demonstrated by thymic nurse T cells (TNC-T). Immunology 1984. 51: 269– 273. 16 Fink, P. J., Weissman, I. L., Kaplan, H. S. and Kyewski, B. A., The immune-competence of murine stromal cell- associated thymocytes. J. Immunol. 1984. 132: 2266– 2272. 17 Aguilar, L. K., Aguilar-Cordova, E., Cartwright Jr., J. and Belmont, J. W., Thymic nurse cells are sites of thymocyte apoptosis. J. Immunol. 1994. 152: 2645– 2651. 18 Hiramine, C., Nakagawa, T., Miyauchi, A. and Hojo, K., Thymic nurse cells as the site of thymocyte apoptosis and apoptotic cell clearance in the thymus of cyclophosphamide-treated mice. Lab. Invest. 1996. 75: 185– 201. 19 Kyewski, B. A., Rouse, R. V. and Kaplan, H. S., Thymocyte rosette: multicellular complexes of lymphocytes and bone marrow-derived stromal cells in the mouse thymus. Proc. Natl. Acad. Sci. USA 1982. 79: 5646– 5650. 20 Kyewski, B. A., Momburg, F. and Schirrmacher, V., Phenotype of stromal cell-associated thymocytes in situ is compatible with selection of the T cell repertoire at an "immature" stage of thymic T cell differentiation. Eur. J. Immunol. 1987. 17: 961– 967. 21 Savino, W., Villa-Verde, D. M. S. and Lannes-Vieira, J., Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol. Today 1993. 14: 158– 161. 22 Singer, K. H., Denning, S. M., Whichard, L. P. and Haynes, B. G., Thymocyte LFA-1 and thymic epithelial cell ICAM-1 molecules mediate binding of activated human thymocytes to thymic epithelial cells. J. Immunol. 1990. 144: 2931– 2939. 23 Nonoyama, S., Nakayama, M., Shiohara, T. and Yata, J., Only dull CD3+ thymocytes bind to thymic epithelial cell. The binding is elicited by both CD2/LFA-3 and LFA- 1/ICAM-1 interactions. Eur. J. Immunol. 1989. 19: 1631– 1635. 24 Pilarski, L. M., Yacyshyn, B. R., Jensen, G. S., Pruski, E. and Pabst H. F., β1 integrin (CD29) expression on human postnatal T cell subsets defined by selective CD45 isoform expression. J. Immunol. 1991. 147: 830– 837. 25 Lynch, F. and Ceredig, R., Mouse strain variation in Ly- 24 (Pgp-1) expression by peripheral T cells and thymocytes: implications for T cell differentiation. Eur. J. Immunol. 1989. 19: 223– 229. 26 Villa-Verde, D. M. S., Lagrota-Candido, J. M., Vannier-Santos, M. S., Chamas, R., Brentani, R. R. and Savino, W., Extracellular matrix components of the mouse thymus microenvironment. IV. Modulation of thymic nurse cells by extracellular matrix ligangs and receptors. Eur. J. Immunol. 1994. 24: 659– 664. 27 Ardavin, C. and Shortman, K., Cell surface marker analysis of mouse thymic dendritic cells. Eur. J. Immunol. 1992. 22: 859– 862. 28 Strassmann, G., Springer, T. A. and Adams, D. O., Studies on antigens associated with the activation of murine mononuclear phagocytes: kinetics of and requirements for induction of lymphocyte function- associated (LFA)-1 antigen in vitro. J. Immunol. 1985. 135: 147– 151. 29 Colic, M. and Drabek, D., Expression and function of intercellular adhesion molecule 1 (ICAM-1) on rat thymic macrophages in culture. Immunol. Lett. 1991. 28: 251– 257. 30 Salomon, D. R., Mojcik, C. F., Chang, A. C., Wads-worth, S., Adams, D. H., Coligan, J. E. and Shevach, E. M., Constitutive activation of integrin alpha 4 beta 1 defines a unique stage of human thymocyte development. J. Exp. Med. 1994. 179: 1573– 1584. 31 Godfrey, D. I., Kennedy, J., Suda, T. and Zlotnik, A., A developmental pathway involving four phenotypically and functionally distinct substs of CD3-CD4-CD8-triple- negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 1993. 150: 4244– 4252. 32 Fowlkes, B. J. and Pardoll, D. M., Molecular and cellular events of T cell development. Adv. Immunol. 1989. 44: 207– 264. 33 Mombaerts, P., Lacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S. and Papaioannou, V. E., RAG-1- deficient mice have no mature B and T lymphocytes. Cell 1992. 68: 869– 877. 34 Shinkai, Y., Ratburn, G., Lam, K.-P., Oltz, E. M., Steward, V., Mendelson, M., Charron, J., Datta, M., Young, F., Stall, A. M. and Alt, F. W., RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992. 68: 855– 867. 35 Shinkai, Y., Koyasu, S., Nakayama, K., Murphi, K. M., Loh, D. Y., Reinherz, E. L. and Alt, F. W., Restoration of T cell development in RAG-2-deficient mice by functional TCR transgene. Science 1993. 259: 822– 825. 36 Mombaerts, P., Clark, A. R., Rudnicki, M. A., Lacomini, J., Itohara, S., Lafaille, J. J., Wang, L., Ichikawa, Y., Jaenisch, R., Hooper, M. L. and Tonegawa, S., Mutations in the T-cell antigen receptor alpha and beta block thymocyte development at different stages. Nature 1992. 360: 225– 231. 37 Molina, T. J., Kishihara, K., Siderowski, D. P., van Ewijk, W., Narendran, A., Timms, E., Wakeham, A., Paige, C. J., Hartmann, K.-U., Veillette, A., Davidson, D. and Mak, T. W., Profound block in thymocyte development in mice lacking p56lck. Nature 1992. 357: 161– 164. 38 Agger, R., Witmer-Park, M., Romani, N., Stössel, H., Swiggard, W. J., Metlay, J. P., Storozynsky, E., Freimuth, P. and Steinman, R. M., Two populations of splenic dendritic cells detected with M342, a new monoclonal to an intracellular antigen of interdigitanting dendritic cells and some B lymphocytes. J. Leukoc. Biol. 1992. 52: 34– 42. 39 Metlay, J. P., Witmer-Pack, M. D., Agger, R., Crowley, M. T., Lawless, D. and Steinman, R. M., The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J. Exp. Med. 1990. 171: 1753– 1771. 40 Rahemtulla, A., Fung-Leung, W. P., Schilham, M., Kündig, T. M., Sambhara, S. R., Narendran, A., Arabian, A., Wakeham, A., Paige, C. J., Zinkernagel, R. M., Miller, R. G. and Mak, T. W., Normal development and function of CD8+ cells but markedly decreased helper T cell activity in mice lacking CD4. Nature 1991. 353: 180– 184. 41 Grusby, M. J., Johnson, R. S., Papaioannou, V. E. and Glimcher, L. H., Depletion of CD4+ T cells in major histocompatibility complex class ll-deficient mice. Science 1991. 253: 1417– 1420. 42 Fung-Leung, W. P., Schilham, M. W., Rahemtulla, A., K&u Undig, T. M., Vollenweider, M., Potter, J., van Ewijk, W. and Mak, T. W., CD8 is needed for development of cytotixic T cells but not helper T cells. Cell 1991. 65: 443– 449. 43 Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kündig, T. M., Amakawa, R., Kishihara, K., Wakeham, A., Potter, J., Furlonger, C. L., Narendran, A., Suzuki, H., Ohashi, P. S., Taniguchi, T. and Mak, T., Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 1993. 75: 83– 97. 44 Kishihara, K., Penninger, J., Wallace, V. A., Kündig, T. M., Kawai, K., Wakeham, A., Timms, E., Pfeffer, K., Ohashi, P. S., Thomas, M. L., Furlonger, C., Paige, C. J. and Mak, T. W., Normal B lymphocyte development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase-deficient mice. Cell 1993. 74: 143– 156. 45 Amakawa, R., Hakem, A., Kündig, T. M., Matsuyama, T., Simard, J. J. L., Timms, E., Wakeham, A., Mittruecker, H.-W., Griesser, H., Takimoto, H., Schmits, R., Shahinian, A., Ohashi, P. S., Penninger, J. M. and Mak, T. W., Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996. 84: 551– 562. 46 Law, Y. M., Yeung, R. S., Mamalaki, C., Kioussis, D., Mak, T. W. and Flavell, R. A., Human CD4 restores normal T cell development and function in mice deficient in murine CD4. J. Exp. Med. 1994. 179: 1233– 1242. 47 Ardavin, C., Wu, L., Li, C.-L. and Shortman, K., Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 1993. 362: 761– 763. 48 Suzuki, A., Andrew, D. P., Gonzalo, J.-A., Fukumoto, M., Spellberg, J., Hashiyama, M., Takimoto, H., Gerwin, N., Webb, I., Molineux, G., Amakawa, R., Tada, Y., Wakeham, A., Brown, J., McNiece, I., Ley, K., Butcher, E. C., Suda, T., Gutierrez-Ramos, J.-C. and Mak, T. W., CD34-deficient mice have reduced eosinophil accumulation after allergen exposure and show a novel crossreactive 90-kD protein. Blood 1996. 87: 3550– 3562. 49 Schmits, R., Filmus, J., Gerwin, N., Senaldi, G., Kiefer, F., Kundig, T., Wakaham, A., Shahinian, A., Catzavelos, C., Rak, J., Furlonger, C., Zakarian, A., Simard, J. J., Ohashi, P. S., Paige, C. J., Gutierrez-Ramos, J. C. and Mak, T. W., CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenic- ity. Blood 1997. 90: 2217– 2233. 50 Xu, H., Gonzalo, J. A., Pierre, Y. S., Williams, I. R., Kupper, T. S., Cotran, R. S., Springer, T. A. and Gutierrez-Ramos, J.-C., Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1- deficient mice. J. Exp. Med. 1994. 180: 95– 109. 51 Schmits, R., Kündig, T. M., Baker, D. M., Shumaker, G., Simard, J. J. L., Duncan, G., Wakeham, A., Shahinian, A., Van der Heiden, A., Bachmann, M. F., Ohashi, P. S., Mak, T. W. and Hickstein, D. D., LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J. Exp. Med. 1996. 183: 1415– 1426. 52 Krause, D. S., Ito, T., Fackler, M. J., Smith, O. M., Collector, M. I., Sharkis, S. J. and May, W. S., Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 1994. 84: 691– 701. 53 Jalkanen, S. and Jalkanen M., Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J. Cell Biol. 1992. 116: 817– 825. 54 Utsumi, K., Sawada, M., Narumiya, S., Nagamine, J., Sakata, T., Iwagami, S., Kita, Y., Teraoka, H., Hirano, H., Ogata, M., Hamaoka, T. and Fujiwara, H., Adhesion of immature thymocytes to thymic stromal cells through fibronectin molecules and its significance for the induction of thymocyte differentiation. Proc. Natl. Acad. Sci. USA 1991. 88: 5685– 5689. 55 Hume, D. A., Robinson, A. P., Macpherson, G. G. and Gordon, S., The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J. Exp. Med. 1983. 158: 1522– 1536. Citing Literature Volume28, Issue9September 1998Pages 2882-2892 ReferencesRelatedInformation
Referência(s)