Revisão Revisado por pares

Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease

2005; Wiley; Volume: 49; Issue: 2 Linguagem: Inglês

10.1002/mnfr.200400082

ISSN

1613-4133

Autores

Salka Elb�l Rasmussen, Hanne Frederiksen, Kirstine Struntze Krogholm, Lea Poulsen,

Tópico(s)

Antioxidant Activity and Oxidative Stress

Resumo

Molecular Nutrition & Food ResearchVolume 49, Issue 2 p. 159-174 Review Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease Salka Elbøl Rasmussen, Salka Elbøl Rasmussen [email protected] Search for more papers by this authorHanne Frederiksen, Hanne Frederiksen Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, Soeborg, Denmark. Fax: +45-72-34-7001Search for more papers by this authorKirstine Struntze Krogholm, Kirstine Struntze Krogholm Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, Soeborg, Denmark. Fax: +45-72-34-7001Search for more papers by this authorLea Poulsen, Lea Poulsen Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, Soeborg, Denmark. Fax: +45-72-34-7001Search for more papers by this author Salka Elbøl Rasmussen, Salka Elbøl Rasmussen [email protected] Search for more papers by this authorHanne Frederiksen, Hanne Frederiksen Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, Soeborg, Denmark. Fax: +45-72-34-7001Search for more papers by this authorKirstine Struntze Krogholm, Kirstine Struntze Krogholm Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, Soeborg, Denmark. Fax: +45-72-34-7001Search for more papers by this authorLea Poulsen, Lea Poulsen Department of Toxicology and Risk Assessment, Danish Institute for Food and Veterinary Research, Soeborg, Denmark. Fax: +45-72-34-7001Search for more papers by this author First published: 27 January 2005 https://doi.org/10.1002/mnfr.200400082Citations: 296AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The French have one of the lowest incidences of coronary heart disease in the Western world despite a diet with a relatively high fat content. This phenomenon that has puzzled researchers worldwide for more than a decade is known as the ‘French paradox’ and has been linked to the high consumption of red wine in France. Red wine is rich in the complex polyphenols, the proanthocyanidins, and these compounds have recently attracted attention as potential cardiac-protective compounds. The present review summarizes the literature on proanthocyanidins with focus on their chemical structure, the occurrence, the daily intake from foods, the bioavailability and metabolism, and the evidence for a protective effect against cardiovascular diseases. References [1] Renaud, S., de Lorgeril, M., Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [2] Santos-Buelga, C., Scalbert, A., Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [3] Porter, L. J., Flavans and proanthocyanidins, in: Harborne J. B. (Ed.), The Flavonoids – Advances in Research since 1986, Chapman and Hall, London 1994, pp. 23–55. [4] Rimm, E. B., Klatsky, A., Grobbee, D., Stampfer, M. J., Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits. BMJ 1996, 312, 731–736. [5] Gronbaek, M., Deis, A., Sorensen, T. I., Becker, U., Schnohr, P., Jensen, G., Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 1995, 310, 1165–1169. [6] Constant, J., Alcohol, ischemic heart disease, and the French paradox. Coronary Artery Disease 1997, 8, 645–649. [7] Theobald, H., Bygren, L. O., Carstensen, J., Engfeldt, P., A moderate intake of wine is associated with reduced total mortality and reduced mortality from cardiovascular disease. J. Stud. Alcohol 2000, 61, 652–656. [8] Rasmussen, S. E., Functional foods, cardiovascular disease and diabetes, in: Arnoldi, A. (Ed.), Flavonoids and Cardiovascular disease. Woodhead Publishing, 2004. [9] Pervaiz, S., Resveratrol: from grapevines to mammalian biology. FASEB J. 2003, 17, 1975–1985. [10] Dell'Agli, M., Busciala, A., Bosisio, E., Vascular effects of wine polyphenols. Cardiovasc. Res. 2004, in press. [11] Williams, C. A., Grayer, R. J., Anthocyanins and other flavonoids. Nat. Prod. Rep. 2004, 21, 539–573. [12] Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., et al., Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [13] Pascual-Teresa, S., Santos-Buelga, C., Rivas-Gonzalo, J. C., Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem. 2000, 48, 5331–5337. [14] Gu, L., Kelm, M. A., Hammerstone, J. F., Zhang, Z., et al., Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom. 2003, 38, 1272–1280. [15] Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., et al., Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134, 613–617. [16] Auger, C., Al Awwadi, N., Bornet, A., Rouanet, J. M., et al., Catechins and procyanidins in Mediterranean diets. Food Res. Int. 2004, 37, 233–245. [17] Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., et al., Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [18] Geleijnse, J. M., Launer, L. J., Van der Kuip, D. A., Hofman, A., Witteman, J. C., Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am. J. Clin. Nutr. 2002, 75, 880–886. [19] Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B., Kromhout, D., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [20] Deprez, S., Mila, I., Huneau, J. F., Tome, D., Scalbert, A., Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid. Redox. Signal. 2001, 3, 957–967. [21] Spencer, J. P. E., Chaudry, F., Pannala, A. S., Srai, S. K., et al., Decomposition of Cocoa Procyanidins in the Gastric Milieu. Biochem. Biophys. Res. Commun. 2000, 272, 236–241. [22] Donovan, J. L., Manach, C., Rios, L., Morand, C., et al., Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br. J. Nutr. 2002, 87, 299–306. [23] Rios, L. Y., Bennett, R. N., Lazarus, S. A., Remesy, C., et al., Cocoa procyanidins are stable during gastric transit in humans. Am. J. Clin. Nutr. 2002, 76, 1106–1110. [24] Manach, C., Scalbert, A., Morand, C., Remesy, C., Jimenez, L., Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [25] Deprez, S., Brezillon, C., Rabot, S., Philippe, C., et al., Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J. Nutr. 2000, 130, 2733–2738. [26] Gonthier, M. P., Donovan, J. L., Texier, O., Felgines, C., et al., Metabolism of dietary procyanidins in rats. Free Radic. Biol. Med. 2003, 35, 837–844. [27] Rios, L. Y., Gonthier, M. P., Remesy, C., Mila, I., et al., Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am. J. Clin. Nutr. 2003, 77, 912–918. [28] Holt, R. R., Lazarus, S. A., Sullards, M. C., Zhu, Q. Y., et al., Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 2002, 76, 798–804. [29] Baba, S., Osakabe, N., Natsume, M., Terao, J., Absorption and urinary excretion of procyanidin B2 [epicatechin-(4[beta]-8)-epicatechin] in rats. Free Radic. Biol. Med. 2002, 33, 142–148. [30] Gee, J. M., DuPont, M. S., Day, A. J., Plumb, G. W., et al., Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J. Nutr. 2000, 130, 2765–2771. [31] Nielsen, S. E., Breinholt, V., Justesen, U., Cornett, C., Dragsted, L. O., In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica 1998, 28, 389–401. [32] Nielsen, S. E., Breinholt, V., Cornett, C., Dragsted, L. O., Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus. Food Chem. Toxicol. 2000, 38, 739–746. [33] Zhu, B. T., Ezell, E. L., Liehr, J. G., Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. J. Biol. Chem. 1994, 269, 292–299. [34] Cremin, P., Kasim-Karakas, S., Waterhouse, A. L., LC/ES-MS detection of hydroxycinnamates in human plasma and urine. J. Agric. Food Chem. 2001, 49, 1747–1750. [35] Eyre, H., Kahn, R., Robertson, R. M., the ACS/ADA/AHA Collaborative Writing Committee, ACS/ADA/AHA Collaborative Writing Committee, Clark, N. G., Doyle, C., Hong, Y., Gansler, T., Glynn, T., Smith, R. A., Taubert, K., Thun, M. J., Preventing Cancer, Cardiovascular Disease, and Diabetes: A Common Agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation 2004, 109, 3244–3255. [36] Thompson, G. R., Pathogenesis of atherosclerosis, in: A Handbook of Hyperlipidemia, Second Edition, Current Science Ltd., London 1994, pp. 87–99. [37] Steinberg, D., Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997, 272, 20963–20966. [38] Brown, M. S., Goldstein, J. L., Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 1983, 52, 223–261. [39] Fuster, V., Lewis, A., Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994, 90, 2126–2146. [40] Kehrer, J. P., Smith, C. V., Free radicals in biology: sources, reactivities, and roles in the etiology of human diseases, in: Frei, B. (Ed.), Natural Oxidants, Academic Press, New York 1994, pp. 25–62. [41] Gutteridge, J. M. C., Halliwell, B., Antioxidants in Nutrition, Health, and Disease, Oxford University Press, Oxford 1994. [42] Jovanovic, S. V., Steenken, S., Simic, M. G., Hara, Y., Antioxidant properties of flavonoids: reduction potentials and electron transfer reactions of flavonoid radicals, in: Rice-Evans, C., Packer, L. (Eds.), Flavonoids in Health and Disease. Marcel Dekker, New York 1998, pp. 137–161. [43] Bors, W., Saran, M., Radical scavenging by flavonoid antioxidants. Free Radic. Res. Commun. 1987, 2, 289–294. [44] Lotito, S. B., Actis-Goretta, L., Renart, M. L., Caligiuri, M., et al., Influence of Oligomer Chain Length on the Antioxidant Activity of Procyanidins. Biochem. Biophys. Res. Commun. 2000, 276, 945–951. [45] Verstraeten, S. V., Keen, C. L., Schmitz, H. H., Fraga, C. G., Oteiza, P. I., Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic. Biol. Med. 2003, 34, 84–92. [46] Porter, M. L., Krueger, C. G., Wiebe, D. A., Cunningham, D. G., Reed, J. D., Cranberry proanthocyanidins associate with low-density lipoproteins and inhibit in vitro Cu2+-induced oxidation. J. Sci. Food Agric. 2001, 81, 1306–1313. [47] da Silva Porto, P. A. L., Laranjinha, J. A. N., de Freitas, V. A. P., Antioxidant protection of low density lipoprotein by procyanidins: structure/activity relationships. Biochem. Pharmacol. 2003, 66, 947–954. [48] Kromhout, D., Diet and cardiovascular diseases. J. Nutr. Health Aging 2001, 5, 144–149. [49] World Health Organization, Natural Antioxidants and Lipid Peroxidation in Atherosclerosis and Cancer. Alpac, Helsinki, Finland, Aug. 22–25, 1995. [50] Weisburger, J. H., Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp. Biol. Med. (Maywood) 2001, 226, 891–897. [51] Fuller, C. J., Jialal, I., Effects of antioxidants and fatty acids on low-density-lipoprotein oxidation. Am. J. Clin. Nutr. 1994, 60, 1010S–1013S. [52] Aviram, M., Fuhrman, B., Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann. N. Y. Acad. Sci. 2002, 957, 146–161. [53] Blake, G. J., Ridker, P. M., Inflammatory biomarkers and cardiovascular risk prediction. J. Int. Med. 2002, 252, 283–294. [54] Sen, C. K., Bagchi, D., Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol. Cell Biochem. 2001, 216, 1–7. [55] Walle, T., Vincent, T. S., Walle, U. K., Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochem. Pharmacol. 2003, 65, 1603–1610. [56] Hatano, T., Hori, M., Hemingway, R. W., Yoshida, T., Size exclusion chromatographic analysis of polyphenol-serum albumin complexes. Phytochemistry 2003, 63, 817–823. [57] Koga, T., Meydani, M., Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am. J. Clin. Nutr. 2001, 73, 941–948. [58] Badia, E., Sacanella, E., Fernandez-Sola, J., Nicolas, J. M., et al., Decreased tumor necrosis factor-induced adhesion of human monocytes to endothelial cells after moderate alcohol consumption. Am. J. Clin. Nutr. 2004, 80, 225–230. [59] Estruch, R., Sacanella, E., Badia, E., Antunez, E., et al., Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial: Effects of wine on inflammatory markers. Atherosclerosis 2004, 175, 117–123. [60] Kalin, R., Righi, A., Del Rosso, A., Bagchi, D., et al., Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radic. Res. 2002, 36, 819–825. [61] Duffy, S. J., Vita, J. A., Effects of phenolics on vascular endothelial function. Curr. Opin. Lipidol. 2003, 14, 21–27. [62] Mizutani, K., Ikeda, K., Kawai, Y., Yamori, Y., Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP). J. Nutr. Sci. Vitaminol. 1999, 45, 95–106. [63] Diebolt, M., Bucher, B., Andriantsitohaina, R., Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 2001, 38, 159–165. [64] Bernatova, I., Pechanova, O., Babal, P., Kysela, S., et al., Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am. J. Physiol. Heart Circul. Physiol. 2002, 282, H942–H948. [65] Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S., Folts, J. D., Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999, 100, 1050–1055. [66] Koulouris, S., Marousis, P., Karabinos, I., Triantafyllou, K., et al., W12.300 Saturated fat administration in healthy volunteers is associated with postprandial endothelial dysfunction which is totally reversed by the concomitant intake of red wine. Atherosclerosis Suppl. 2004, 5, 69–70. [67] Papamichael, C., Karatzis, E., Karatzi, K., Aznaouridis, K., et al., Red wine's antioxidants counteract acute endothelial dysfunction caused by cigarette smoking in healthy nonsmokers. Am. Heart J. 2004, 147, 274. [68] Engler, M. B., Engler, M. M., Chen, C. Y., Malloy, M. J., et al., Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 2004, 23, 197–204. [69] Andriambeloson, E., Stoclet, J. C., Andriantsitohaina, R., Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J. Cardiovasc. Pharmacol. 1999, 33, 248–254. [70] Martin, S., Andriambeloson, E., Takeda, K., Andriantsitohaina, R., Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Brit. J. Pharmacol. 2002, 135, 1579–1587. [71] Fitzpatrick, D. F., Bing, B., Maggi, D. A., Fleming, R. C., O'Malley, R. M., Vasodilating procyanidins derived from grape seeds. Ann. N. Y. Acad. Sci. 2002, 957, 78–89. [72] Andriambeloson, E., Magnier, C., Haan-Archipoff, G., Lobstein, A., et al., Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J. Nutr. 1998, 128, 2324–2333. [73] Andriambeloson, E., Kleschyov, A. L., Muller, B., Beretz, A., et al., Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Brit. J. Pharmacol. 1997, 120, 1053–1058. [74] Fitzpatrick, D. F., Fleming, R. C., Bing, B., Maggi, D. A., O'Malley, R. M., Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J. Agric. Food Chem. 2000, 48, 6384–6390. [75] Rosenkranz, S., Knirel, D., Dietrich, H., Flesch, M., et al., Inhibition of the PDGF receptor by red wine flavonoids provides a molecular explanation for the “French paradox”. FASEB J. 2002, 16, 1958–1960. [76] Fuster, V., Badimon, L., Badimon, J. J., Chesebro, J. H., The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N. Engl. J. Med. 1992, 326, 242–250. [77] Ross, R., The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362, 809. [78] Steinberg, F. M., Bearden, M. M., Keen, C. L., Cocoa and chocolate flavonoids: implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103, 215–223. [79] Schewe, T., Kuhn, H., Sies, H., Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. J. Nutr. 2002, 132, 1825–1829. [80] Murphy, K. J., Chronopoulos, A. K., Singh, I., Francis, M. A., et al., Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J Clin. Nutr. 2003, 77, 1466–1473. [81] Pignatelli, P., Pulcinelli, F. M., Celestini, A., Lenti, L., et al., The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr. 2000, 72, 1150–1155. [82] Ruf, J. C., Wine and polyphenols related to platelet aggregation and atherothrombosis. Drugs Exp. Clin Res. 1999, 25, 125–131. [83] Bagchi, D., Sen, C. K., Ray, S. D., Das, D. K., et al., Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat. Res. 2003, 523–524, 87–97. [84] Reed, J., Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2002, 42, 301–316. [85] Steinberg, F. M., Bearden, M. M., Keen, C. L., Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103, 215–223. [86] Yilmaz, Y., Toledo, R. T., Health aspects of functional grape seed constituents. Trends Food Sci. Technol. 2004, in press. [87] Keevil, J. G., Osman, H. E., Reed, J. D., Folts, J. D., Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J. Nutr. 2000, 130, 53–56. [88] Folts, J. D., Antithrombotic potential of grape juice and red wine for preventing heart attacks. Pharmaceut. Biol. 1998, 36, suppl. 1, 21–27. [89] Wollny, T., Aiello, L., Di Tommaso, D., Bellavia, V., et al., Modulation of haemostatic function and prevention of experimental thrombosis by red wine in rats: a role for increased nitric oxide production. Br. J. Pharmacol. 1999, 127, 747–755. [90] Demrow, H. S., Slane, P. R., Folts, J. D., Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 1995, 91, 1182–1188. [91] Ruf, J. C., Berger, J. L., Renaud, S., Platelet rebound effect of alcohol withdrawal and wine drinking in rats. Relation to tannins and lipid peroxidation. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 140–144. [92] Osman, H. E., Maalej, N., Shanmuganayagam, D., Folts, J. D., Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys. J. Nutr. 1998, 128, 2307–2312. [93] Xia, J., Allenbrand, B., Sun, G. Y., Dietary supplementation of grape polyphenols and chronic ethanol administration on LDL oxidation and platelet function in rats. Life Sci. 1998, 63, 383–390. [94] Rohdewald, P., A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharmacol. Ther. 2002, 40, 158–168. [95] Schonlau, F., Rohdewald, P., Pycnogenol for diabetic retinopathy. A review. Int. Ophthalmol. 2001, 24, 161–171. [96] Packer, L., Rimbach, G., Virgili, F., Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [97] Virgili, F., Pagana, G., Bourne, L., Rimbach, G., et al., Ferulic acid excretion as a marker of consumption of a French maritime pine (Pinus maritima) bark extract. Free Radic. Biol. Med. 2000, 28, 1249–1256. [98] Bayeta, E., Lau, B. H. S., Pycnogenol inhibits generation of inflammatory mediators in macrophages. Nutr. Res. 2000, 20, 249–259. [99] Bito, T., Roy, S., Sen, C. K., Packer, L., Pine bark extract pycnogenol downregulates IFN-gamma-induced adhesion of T cells to human keratinocytes by inhibiting inducible ICAM-1 expression. Free Radic. Biol. Med. 2000, 28, 219–227. [100] Liu, F. J., Zhang, Y. X., Lau, B. H., Pycnogenol enhances immune and haemopoietic functions in senescence-accelerated mice. Cellular And Molecular Life Sciences: CMLS 1998, 54, 1168–1172. [101] Rong, Y., Li, L., Shah, V., Lau, B. H., Pycnogenol protects vascular endothelial cells from t-butyl hydroperoxide induced oxidant injury. Biotechnol. Therapeut. 1994, 5, 117–126. [102] Virgili, F., Kim, D., Packer, L., Procyanidins extracted from pine bark protect [alpha]-tocopherol in ECV 304 endothelial cells challenged by activated RAW 264.7 macrophages: role of nitric oxide and peroxynitrite. FEBS Lett. 1998, 431, 315–318. [103] Cho, K. J., Yun, C. H., Yoon, D. Y., Cho, Y. S., et al., Effect of Bioflavonoids Extracted from the Bark of Pinus maritima on Proinflammatory Cytokine Interleukin-1 Production in Lipopolysaccharide-Stimulated RAW 264.7. Toxicol. Appl. Pharmacol. 2000, 168, 64–71. [104] Liu, F., Lau, B. H., Peng, Q., Shah, V., Pycnogenol protects vascular endothelial cells from beta-amyloid-induced injury. Biol. Pharmaceut. Bull. 2000, 23, 735–737. [105] Peng, Q., Wei, Z., Lau, B. H., Pycnogenol inhibits tumor necrosis factor-alpha-induced nuclear factor kappa B activation and adhesion molecule expression in human vascular endothelial cells. Cellular And Molecular Life Sciences: CMLS 2000, 57, 834–841. [106] Spadea, L., Balestrazzi, E., Treatment of vascular retinopathies with Pycnogenol. Phytother. Res. 2001, 15, 219–223. [107] Putter, M., Grotemeyer, K. H., Wurthwein, G., Araghi-Niknam, M., et al., Inhibition of smoking-induced platelet aggregation by aspirin and pycnogenol. Thromb. Res. 1999, 95, 155–161. [108] Liu, X., Wei, J., Tan, F., Zhou, S., et al., Pycnogenol, French maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci. 2004, 74, 855–862. [109] Hosseini, S., Lee, J., Sepulveda, R. T., Rohdewald, P., Watson, R. R., A randomized, double-blind, placebo-controlled, prospective, 16 week crossover study to determine the role of Pycnogenol in modifying blood pressure in mildly hypertensive patients. Nutr. Res. 2001, 21, 1251–1260. [110] Devaraj, S., Vega-Lopez, S., Kaul, N., Schonlau, F., et al., Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids 2002, 37, 931–934. [111] Silliman, K., Parry, J., Kirk, L. L., Prior, R. L., Pycnogenol does not impact the antioxidant or vitamin C status of healthy young adults. J. Am. Diet. Assoc. 2003, 103, 67–72. [112] Cossins, E., Lee, R., Packer, L., ESR studies of vitamin C regeneration, order of reactivity of natural source phytochemical preparations. Biochem. Molec. Biol. Int. 1998, 45, 583–597. [113] Auger, C., Caporiccio, B., Landrault, N., Teissedre, P. L., et al., Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetus auratus). J. Nutr. 2002, 132, 1207–1213. [114] Vinson, J. A., Teufel, K., Wu, N., Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model. Atherosclerosis 2001, 156, 67–72. [115] Vinson, J. A., Mandarano, M. A., Shuta, D. L., Bagchi, M., Bagchi, D., Beneficial effects of a novel IH636 grape seed proanthocyanidin extract and a niacin-bound chromium in a hamster atherosclerosis model. Mol. Cell Biochem. 2002, 240, 99–103. [116] Bentzon, J. F., Skovenborg, E., Hansen, C., Moller, J., et al., Red wine does not reduce mature atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001, 103, 1681–1687. [117] Stocker, R., O'Halloran, R. A., Dealcoholized red wine decreases atherosclerosis in apolipoprotein E gene-deficient mice independently of inhibition of lipid peroxidation in the artery wall. Am. J. Clin. Nutr. 2004, 79, 123–130. [118] Waddington, E., Puddey, I. B., Croft, K. D., Red wine polyphenolic compounds inhibit atherosclerosis in apolipoprotein E-deficient mice independently of effects on lipid peroxidation. Am. J. Clin. Nutr. 2004, 79, 54–61. [119] Aviram, M., Fuhrman, B., Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann. N. Y. Acad. Sci. 2002, 957, 146–161. [120] Zern, T. L., West, K. L., Fernandez, M. L., Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J. Nutr. 2003, 133, 2268–2272. [121] Auger, C., Laurent, N., Laurent, C., Besancon, P., et al., Hydroxycinnamic acids do not prevent aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters. Life Sci. 2004, 74, 2365–2377. [122] Miura, Y., Chiba, T., Tomita, I., Koizumi, H., et al., Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J. Nutr. 2001, 131, 27–32. [123] Xu, Q., Mouse models of arteriosclerosis: from arterial injuries to vascular grafts. Am. J. Pathol. 2004, 165, 1–10. [124] Preuss, H. G., Wallerstedt, D., Talpur, N., Tutuncuoglu, S. O., et al., Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: a pilot study. J. Med. 2000, 31, 227–246. [125] Vigna, G. B., Costantini, F., Aldini, G., Carini, M., et al., Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism 2003, 52, 1250–1257. [126] Mathur, S., Devaraj, S., Grundy, S. M., Jialal, I., Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J. Nutr. 2002, 132, 3663–3667. [127] Wiswedel, I., Hirsch, D., Kropf, S., Gruening, M., et al., Flavanol-rich cocoa drink lowers plasma F2-isoprostane concentrations in humans. Free Radic. Biol. Med. 2004, 37, 411–421. [128] Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., et al., Flavonoid intake and long-term risk of coronary heart disease and cancer in the Seven Countries Study. Arch. Int. Med. 1995, 155, 381–386. [129] Keli, S. O., Hertog, M. G., Feskens, E. J., Kromhout, D., Dietary flavonoids, antioxidants vitamins, and incidence of stroke: the Zutphen study. Arch. Int. Med. 1996, 156, 637–642. [130] Rimm, E. B., Katan, M. B., Ascherio, A., Stampfer, M. J., Willett, W. C., Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann. Int. Med. 1996, 125, 384–389. [131] Hertog, M. G., Sweetnam, P. M., Fehily, A. M., Elwood, P. C., Kromhout, D., Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am. J. Clin. Nutr. 1997, 65, 1489–1494. [132] Hirvonen, T., Virtamo, J., Korhonen, P., Albanes, D., Pietinen, P., Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke 2000, 31, 2301–2306. [133] Sesso, H. D., Gaziano, J. M., Liu, S., Buring, J. E., Flavonoid intake and the risk of cardiovascular disease in women. Am. J. Clin. Nutr. 2003, 77, 1400–1408. [134] Peters, U., Poole, C., Arab, L., Does tea affect cardiovascular disease? A meta-analysis. Am. J. Epidemiol. 2001, 154, 495–503. [135] Arts, I. C., Hollman, P. C., Feskens, E. J., Bueno de Mesquita, H. B., Kromhout, D., Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am. J. Clin. Nutr. 2001, 74, 227–232. [136] Arts, I. C., Jacobs, D. R., Jr., Harnack, L. J., Gross, M., Folsom, A. R., Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology 2001, 12, 668–675. [137] Nanji, A. A., Alcohol and ischemic heart disease: wine, beer or both? Int. J. Cardiol. 1985, 8, 487–489. [138] Ruf, J. C., Overview of epidemiological studies on wine, health and mortality. Drugs Exp. Clin. Res. 2003, 29, 173–179. [139] Tjonneland, A., Gronbaek, M., Stripp, C., Overvad, K., Wine intake and diet in a random sample of 48763 Danish men and women. Am. J. Clin. Nutr. 1999, 69, 49–54. Citing Literature Volume49, Issue2February 2005Pages 159-174 ReferencesRelatedInformation

Referência(s)