Long-term enhancement of maze learning in mice via a generalized Mozart effect
2005; Taylor & Francis; Volume: 27; Issue: 8 Linguagem: Inglês
10.1179/016164105x63647
ISSN1743-1328
AutoresPeter Aoun, Timothy A. Jones, Gordon L. Shaw, Mark Bodner,
Tópico(s)Neural dynamics and brain function
ResumoAn animal model of the 'generalized Mozart effect' (GME) - enhanced/normalized higher brain function in response to music exposure - has been established. We extend those results in two studies using another species (mice). Study 1: (1) maze testing after music exposure was extended to a minimum of 6 hours; (2) no exposure to music in utero. Study 2: (1) music exposure time further reduced; (2) maze testing extended to 24 hours.Study 1: two mouse groups were exposed to music continuously for 10 hours per day for 10 weeks (Group I: Mozart's Sonata K.448, Group II: Beethoven's Fur Elise). After 10 weeks, the ability to negotiate a T-maze was assessed (recording working time in maze, number of errors). Maze ability was tested 6 hours following the last music exposure. Study 2: two mouse groups were exposed periodically to music (58% silence) 10 hours per day for 10 weeks. Experiments after 10 weeks examined the groups' abilities to run the maze (recording working time/errors). Experiments were conducted 24 hours following the last music exposure.The Mozart group exhibited significant enhancements compared with the control mice in both studies, i.e. significantly lower working time (p<0.05) and committed fewer errors.Observation of GME in another species supports its generality for the mammalian cortex. The absence of a GME in fMRI studies for the control music also indicates a neurophysiological basis. With extended exposure, GME is a long-term effect, indicating potential clinical importance. It has been demonstrated that GME reduces neuropathological spiking significantly in epileptics. We discuss the relevance of this study for epilepsy treatment.
Referência(s)