Revisão Revisado por pares

Human Epidermal Keratin Filaments: Studies on Their Structure and Assembly a

1985; Wiley; Volume: 455; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1985.tb50424.x

ISSN

1749-6632

Autores

Riva Eichner, Pamela Rew, Andreas Engel, Ueli Aebi,

Tópico(s)

Plant Reproductive Biology

Resumo

Annals of the New York Academy of SciencesVolume 455, Issue 1 p. 381-402 Human Epidermal Keratin Filaments: Studies on Their Structure and Assembly† RIVA EICHNER, RIVA EICHNER Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorPAMELA REW, PAMELA REW Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorANDREAS ENGEL, ANDREAS ENGEL Biozentrum, University of Basel, CH-4056 Basel, SwitzerlandSearch for more papers by this authorUELI AEBI, Corresponding Author UELI AEBI Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205To whom correspondence should be addressed.Search for more papers by this author RIVA EICHNER, RIVA EICHNER Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorPAMELA REW, PAMELA REW Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205Search for more papers by this authorANDREAS ENGEL, ANDREAS ENGEL Biozentrum, University of Basel, CH-4056 Basel, SwitzerlandSearch for more papers by this authorUELI AEBI, Corresponding Author UELI AEBI Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205To whom correspondence should be addressed.Search for more papers by this author First published: October 1985 https://doi.org/10.1111/j.1749-6632.1985.tb50424.xCitations: 33 a This work was supported by a National Institutes of Health Grant GM31940 (to U. A.) and a grant from the Swiss National Science Foundation (to A. E.). U. A. was also the recipient of a research award from the Maurice-Müller-Foundation in Switzerland; R. E. was supported in part by a Dermatology Foundation Fellowship from Avon Products. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Anderton, B. H. 1981. Intermediate filaments: a family of homologous structures. J. Muscle Res. Cell Motil. 2: 141–166. 2 Osborn, M., N. Geisler, G. Shaw, G. Sharp and K. Weber. 1981. Intermediate filaments. Cold Spring Harbor Symp. Quant. Biol. 46: 413–429. 3 Steinert, P. M. 1981. Intermediate filaments. In Electron Microscopy of Proteins. J. R. Harris, Ed. 1: 125–166. Academic Press. 4 Lazarides, E. 1982. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu. Rev. Biochem. 51: 219–250. 5 Geisler, N. and K. Weber. 1982. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1: 1649–1656. 6 Geisler, N., E. Kaufmann, S. Fischer, U. Plessmann and K. Weber. 1983. Neurofilament architecture combines structural principles of intermediate filaments with car-boxy-terminal extensions increasing in size between triplet proteins. EMBO J. 2: 1295–1302. 7 Moll, R., W. W. Franke, D. L. Schiller, B. Geiger and R. Krepler. 1982. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24. 8 Tseng, S. C. G., M. Jarvinen, W. G. Nelson, H. W. Huang, J. Woodcock-Mitchell and T. -T. Sun. 1982. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell 30: 361–372. 9 Sun, T.-T., R. Eichner, A. Schermer, D. Cooper, W. G. Nelson and R. A. Weiss. 1984. Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model. In The Cancer Cell. A. Levine, W. Topp, G. Woude and J. D. Watson, Eds.: 215–222. Cold Spring Harbor Laboratory. Cold Spring Harbor , NY . 10 Eichner, R., P. Bonitz and T. -T. Sun. 1984. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J. Cell Biol. 98: 1388–1396. 11 Fuchs, E. V., S. M. Coppock, H. Green and D. W. Cleveland. 1981. Two distinct classes of keratin genes and their evolutionary significance. Cell 27: 75–84. 12 Fuchs, E. and D. Marchuk. 1983. Type I and type II keratins have evolved from lower eukaryotes to form the epidermal intermediate filaments in mammalian skin. Proc. Natl. Acad. Sci. USA 80: 5857–5861. 13 Franke, W. W., D. L. Schiller, M. Hatzfeld and S. Winter. 1983. Protein complexes of intermediate-sized filaments: melting of cytokeratin complexes in urea reveals different polypeptide separation characteristics. Proc. Natl. Acad. Sci. USA 80: 7113–7117. 14 Eichner, R., U. Aebi and T. -T. Sun. 1983. Complex formation between the 'constant' members (50 kD and 58 kD keratins) of keratin subfamilies A and B. J. Cell Biol. 97: 227a. 15 Matoltsy, A. G. 1965. Soluble prekeratin. In The Biology of the Skin and Hair Growth. A. G. Lyne and B. F. Short, Eds.: 291–305. Angus and Robertson. Sydney . 16 Skerrow, D. 1974. The structure of prekeratin. Biochem. Biophys. Res. Commun. 59: 1311–1316. 17 Baden, H. P., L. A. Goldsmith and B. Fleming. 1973. The polypeptide composition of epidermal prekeratin. Biochem. Biophys. Acta 317: 303–311. 18 Steinert, P. M. 1975. The extraction and characterization of bovine epidermal alpha-keratin. Biochem. J. 149: 39–48. 19 Steinert, P. M. and M. I. Gulling. 1976. Bovine epidermal keratin filament assembly. Biochem. Biophys. Res. Commun. 70: 221–227. 20 Steinert, P. M., W. W. Idler and S. T. Zimmerman. 1976. Self-assembly of bovine epidermal keratin filaments in vitro. J. Mol. Biol. 108: 547–567. 21 Sun, T. -T. and H. Green. 1978. Keratin filaments of cultured human epidermal cells. J. Biol. Chem. 253: 2053–2060. 22 Stromer, M., T. W. Huiatt, F. L. Richardson and R. M. Robson. 1981. Disassembly of synthetic 10-nm desmin filaments from smooth muscle into protofilaments. Eur. J. Cell Biol. 25: 136–143. 23 Franke, W. W., D. L. Schiller and C. Grund. 1982. Protofilamentous and annular structures as intermediates during reconstitution of cytokeratin filaments in vitro. Biol. Cell 46: 257–268. 24 Ip, W., J. Heuser, M. K. Hartzer, Y. -Y. S. Pang and R. M. Robson. 1983. Structure and polymerization of vimentin and desmin. J. Cell Biol. 97: 226a. 25 Oosawa, F. and M. Kasai. 1962. A theory of linear and helical aggregations of macromolecules. J. Mol. Biol. 4: 10–21. 26 Steven, A. C., J. S. Wall, J. F. Hainfeld and P. M. Steinert. 1982. Structure of fibroblastic intermediate filaments: Analysis by scanning transmission electron microscopy. Proc. Natl. Acad. Sci. USA 79: 3101–3105. 27 Steven, A. C., J. F. Hainfeld, B. L. Trus, J. S. Wall and P. M. Steinert. 1983. The distribution of mass in heteropolymer intermediate filaments assembled in vitro. J. Biol. Chem. 258: 8323–8329. 28 Steven, A. C., J. F. Hainfeld, B. L. Trus, J. S. Wall and P. M. Steinert. 1983. Epidermal keratin filaments assembled in vitro have masses-per-unit-length that scale according to average subunit mass: structural basis for homologous packing of subunits in intermediate filaments. J. Cell Biol. 97: 1939–1944. 29 Engel, A. 1978. Molecular weight determination by scanning transmission electron microscopy. Ultramicroscopy 3: 273–281. 30 Wall, J. 1979. Biological scanning transmission electron microscopy. In Introduction to Electron Microscopy. J. J. Hren, J. I. Goldstein and D. C. Joy, Eds.: 333–342. Plenum Publishing Co. New York . 31 Aebi, U., W. E. Fowler, P. Rew and T. -T. Sun. 1983. The fibrillar substructure of keratin filaments unravelled. J. Cell Biol. 97: 1131–1143. 32 Lee, L. D. and H. P. Baden. 1976. Organization of the polypeptide chains in mammalian keratin. Nature 264: 377–379. 33 Milstone, L. M. 1981. Isolation and characterization of two polypeptides that form intermediate filaments in bovine esophageal epithelium. J. Cell Biol. 88: 317–322. 34 Fuchs, E. and H. Green. 1980. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19: 1033–1042. 35 Bowden, P. E. and W. J. Cunliffe. Modifications of human prekeratin during terminal differentiation. Biochem. J. 199: 145–154. 36 Skerrow, D. and C. J. Skerrow. 1983. Tonofilament differentiation in human epidermis, isolation and polypeptide chain composition of keratinocyte subpopulations. Exp. Cell Res. 143: 27–35. 37 Schweizer, J., M. Kinjo, G. FÜrstenberger and H. Winter. 1984. Sequential expression of mRNA-encoded keratin sets in neonatal mouse epidermis: basal cells with properties of terminally differentiating cells. Cell 37: 159–170. 38 Woodcock-Mitchell, J., R. Eichner, W. G. Nelson and T. -T. Sun. 1982. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J. Cell Biol. 95: 580–588. 39 Franke, W. W., E. Schmid, C. Grund and B. Geiger. 1982. Intermediate filament proteins in nonfilamentous structures: transient disintegration and inclusion of subunit proteins in granular aggregates. Cell 30: 103–113. 40 A. Wegner. 1976. Head-to-tail polymerization of actin. J. Mol. Biol. 109: 139–150. 41 Bergen, L. G. and G. G. Borisy. 1980. Head-to-tail polymerization of microtubules in vitro. J. Cell Biol. 84: 141–150. 42 Bonder, E. M., D. J. Fishkind and M. S. Mooseker. 1983. Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament. Cell 34: 491–501. 43 Moore, P. B., H. Huxley and D. J. Derosier. 1970. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol. 50: 279–295. 44 Fowler, W. E. and U. Aebi. 1982. Polymorphism of actin paracrystals induced by polylysine. J. Cell Biol. 93: 452–458. 45 Smith, P. R., W. E. Fowler and U. Aebi. 1984. Towards an alignment of the actin molecule in the actin filament. Ultramicroscopy 13: 113–124. 46 Thaler, M., K. Fukuyama, W. L. Epstein and K. A. Fisher. 1980. Comparative studies of keratins isolated from psoriasis and atopic dermatitis. J. Invest. Dermatol. 75: 156–158. 47 Zackroff, R. V., A. E. Goldman, J. C. R. Jones, P. M. Steinert and R. D. Goldman. 1984. Isolation and characterization of keratin-like proteins from cultured cells with fibroblastic morphology. J. Cell Biol. 98: 1231–1237. 48 Smith, P. R., U. Aebi, R. Josephs and M. Kessel. 1976. Studies of the structure of the T4 bacteriophage tail sheath. J. Mol. Biol. 106: 243–275. 49 Ahmadi, B. and P. T. Speakman. 1978. Suberimidate crosslinking shows that a rod-shaped, low cystine, high helix protein prepared by limited proteolysis of reduced wool has four protein chains. FEBS Lett. 94: 365–367. 50 Engel, A., W. Baumeister and W. O. Saxton. 1982. Mass mapping of a protein complex with the scanning transmission electron microscope. Proc. Natl. Acad. Sci. USA 79: 4050–4054. 51 Bevington, P. R. 1969. Data Reduction and Error Analysis for the Physical Sciences (p. 237). McGraw-Hill. San Francisco . Citing Literature Volume455, Issue1Intermediate FilamentsOctober 1985Pages 381-402 ReferencesRelatedInformation

Referência(s)