Dynamic mechanical and dielectric relaxations of poly(difluorobenzyl methacrylates)
2000; Wiley; Volume: 38; Issue: 16 Linguagem: Inglês
10.1002/1099-0488(20000815)38
ISSN1099-0488
AutoresRicardo D�az-Calleja, M. J. Sanchı́s, Enrique Sáiz, F. Mart�nez-Pi�a, Roberto de Sousa Miranda, Ligia Gargallo, Deodato Radić, Evaristo Riande,
Tópico(s)Dielectric materials and actuators
ResumoThis work reports the mechanical and dielectric relaxation spectra of three difluorinated phenyl isomers of poly(benzyl methacrylate), specifically, poly(2,4-difluorobenzyl methacrylate), poly(2,5-difluorobenzyl methacrylate) and poly(2,6-difluorobenzyl methacrylate). The strength of the dielectric glass–rubber relaxation of the 2,6 difluorinated phenyl isomer is, respectively, nearly three and two times larger than the strengths of the 2,5 and 2,4 isomers. The 2,4 isomer presents a mechanical α peak the intensity of which is nearly two times that of the other two isomers. Both the mechanical and dielectric relaxation spectra display a subglass process, called γ relaxation, centered in the vicinity of −50 °C at 1 Hz and, in some cases, a subglass β absorption is detected at higher temperature partially masked by the glass–rubber relaxation. The mean-square dipole moments per repeating unit, 〈μ2〉/x, measured at 25 °C in benzene solutions, are 2.5 D2, 1.9 D2, and 5.0 D2 for poly(2,4-difluorobenzyl methacrylate), poly(2,5-difluorobenzyl methacrylate) and poly(2,6-difluorobenzyl methacrylate), respectively. These results, in conjunction with Onsager type equations, permit to conclude that auto and cross-correlation contributions to the dipolar correlation coefficient may have the same time-dependence. On the other hand, dipole intermolecular interactions, rather than differences in the flexibility of the chains, seem to be responsible for the relatively high calorimetric glass-transition temperature of the 2,6 diphenyl isomer, which is, respectively, nearly 36 °C and 32 °C above the Tg's of the 2,4 and 2,5 isomers. Molecular Mechanics calculations give a good account of the differences observed in the polarity of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2179–2188, 2000
Referência(s)