
Activation of P2Y1 receptor triggers two calcium signaling pathways in bone marrow erythroblasts
2006; Elsevier BV; Volume: 534; Issue: 1-3 Linguagem: Inglês
10.1016/j.ejphar.2006.01.010
ISSN1879-0712
AutoresEdgar Julian Paredes‐Gamero, Rogerio B. Craveiro, João Bosco Pesquero, Jerônimo Pereira de França, Maria Etsuko Miamoto Oshiro, Alice T. Ferreira,
Tópico(s)Pancreatic function and diabetes
ResumoIn this study, we describe the presence of P2 receptor subtypes and Ca2+ signaling in erythroblasts. ATP and ADP produced a biphasic increase of intracellular Ca2+ concentration ([Ca2+]i), with an initial transient phase followed by a sustained phase. Reverse transcription polymerase chain reaction (RT-PCR) showed the expression of P2Y1, P2Y2 and P2Y12. The selective P2Y1 receptor antagonist 2'-deoxy-N6-methyl-adenosine-3',5'-diphosphate (MRS2179) and the G(i) protein inhibitor pertussis toxin blocked Ca2+ increase. The initial transient [Ca2+]i increase phase was sensitive to the 1,4,5-inositol trisphosphate (IP3) receptor blocker 2-aminoethoxy-diphenylborate (2-APB), while the sustained phase was sensitive to the protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF109203X) and calcium calmodulin kinase II (CaMKII) inhibitor 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62). In addition, the PKC activator phorbol-12,13-dibutyrate (PDBu) produced increase of [Ca2+]i. Flow cytometry analysis showed the expression of Ca2+-dependent PKC alpha, betaI, gamma and phospho-CaMKII. These results suggest that the activation of the P2Y1 receptor triggers two different [Ca2+]i increase pathways, one IP3-dependent and the other kinase-dependent.
Referência(s)