Extrapolation of asymptotic expansions by a modified Aitken δ2-formula
1981; Springer Science+Business Media; Volume: 21; Issue: 1 Linguagem: Inglês
10.1007/bf01934071
ISSN1572-9125
AutoresPetter E. Bjørstad, Germund Dahlquist, Eric H. Grosse,
Tópico(s)Particle physics theoretical and experimental studies
ResumoA modified Aitken formula permits iterated extrapolations to efficiently estimates 221E; froms n when an asymptotic expansion $$\int_0^x {(T_k^* (t)/(x^p - t^p )^\alpha ) } dt, 0 \mathbin{\lower.3ex\hbox{$\buildrel<\over{\smash{\scriptstyle=}\vphantom{_x}}$}} x \mathbin{\lower.3ex\hbox{$\buildrel<\over{\smash{\scriptstyle=}\vphantom{_x}}$}} 1,$$ holds for some (unknown) coefficientsc j . We study the truncation and irregular error and compare the method with other forms of extrapolation.
Referência(s)