The Dantzig selector and sparsity oracle inequalities
2009; Chapman and Hall London; Volume: 15; Issue: 3 Linguagem: Inglês
10.3150/09-bej187
ISSN1573-9759
Autores Tópico(s)Mathematical Approximation and Integration
ResumoLet $$ Y_j=f_{\ast}(X_j)+\xi_j,\qquad j=1,\dots, n, $$ where $X, X_1,\dots, X_n$ are i.i.d. random variables in a measurable space $(S,\mathcal{A})$ with distribution $\Pi$ and $\xi, \xi_1,\dots ,\xi_n$ are i.i.d. random variables with ${\mathbb E}\xi=0$ independent of $(X_1,\dots, X_n).$ Given a dictionary $h_1,\dots, h_{N}: S\mapsto{\mathbb R},$ let $ f_{\lambda}:=\sum_{j=1}^N \lambda_j h_j$, $ \lambda=(\lambda_1,\dots, \lambda_N)\in{\mathbb R}^N. $ Given $\varepsilon>0,$ define $$ \hat\Lambda_{\varepsilon}:=\Biggl\{\lambda\in{\mathbb R}^N: \max_{1\leq k\leq N} \Biggl|n^{-1}\sum_{j=1}^n \bigl(f_{\lambda}(X_j)-Y_j\bigr)h_k(X_j)\Biggr| \leq\varepsilon \Biggr\} $$ and $$\hat\lambda:=\hat\lambda^{\varepsilon}\in \operatorname{Argmin}_{\lambda\in\hat\Lambda_{\varepsilon}}\|\lambda\| _{\ell_1}. $$ In the case where $f_{\ast}:=f_{\lambda^{\ast}}, \lambda^{\ast}\in {\mathbb R}^N,$ Candes and Tao Ann. Statist. 35 (2007) 2313-2351] suggested using $\hat\lambda$ as an estimator of $\lambda^{\ast}.$ They called this estimator "the Dantzig selector". We study the properties of $f_{\hat\lambda}$ as an estimator of $f_{\ast}$ for regression models with random design, extending some of the results of Candes and Tao (and providing alternative proofs of these results).
Referência(s)