Artigo Acesso aberto Revisado por pares

Enzymes of Ketone Body Utilization in Human Tissues: Protein and Messenger RNA Levels of Succinyl-Coenzyme A (CoA):3-Ketoacid CoA Transferase and Mitochondrial and Cytosolic Acetoacetyl-CoA Thiolases

1997; Springer Nature; Volume: 42; Issue: 4 Linguagem: Inglês

10.1203/00006450-199710000-00013

ISSN

1530-0447

Autores

Toshiyuki Fukao, Xiang‐Qian Song, Grant A. Mitchell, Seiji Yamaguchi, Kazuko Sukegawa, Tadao Or, Naomi Kondo,

Tópico(s)

Muscle metabolism and nutrition

Resumo

We describe the distribution in human tissues of three enzymes of ketone body utilization: succinyl-CoA:3-ketoacid CoA transferase (SCOT), mitochondrial acetoacetyl-CoA thiolase (T2), and cytosolic acetoacetyl-CoA thiolase (CT). Hereditary deficiency of each of these enzymes has been associated with ketoacidosis. Physiologically the two mitochondrial enzymes have different roles: SCOT mediates energy production from ketone bodies (ketolysis), whereas T2 functions both in ketogenesis and ketolysis. In contrast, CT is implicated in cytosolic cholesterol synthesis. We investigated the tissue distribution of these enzymes in humans by quantitative immunoblots and by Northern blots. In most tissues, polypeptide and mRNA levels were proportional. CT and T2 proteins were detected in all tissues examined. CT levels were highest in liver, were 4-fold lower in adrenal glands, kidney, brain, and lung, and were lowest in skeletal and heart muscles. T2 was most abundant in liver but substantial amounts were present in kidney, heart, adrenal glands, and skeletal muscle. SCOT was detected in all tissues except liver: myocardium > brain, kidney and adrenal glands. The relative amounts of T2 and SCOT were similar in all tissues except for liver (T2 > > SCOT) and brain (SCOT > T2). The observed distribution of SCOT, T2, and CT is consistent with current views of their physiologic roles.

Referência(s)
Altmetric
PlumX