Charge-induced clustering in multifield particulate flows
2004; Wiley; Volume: 62; Issue: 7 Linguagem: Inglês
10.1002/nme.1194
ISSN1097-0207
Autores Tópico(s)Lattice Boltzmann Simulation Studies
ResumoInternational Journal for Numerical Methods in EngineeringVolume 62, Issue 7 p. 870-898 Research Article Charge-induced clustering in multifield particulate flows T. I. Zohdi, Corresponding Author T. I. Zohdi [email protected] Department of Mechanical Engineering, University of California, 6195 Etcheverry Hall, Berkeley, CA 94720-1740, U.S.A.Department of Mechanical Engineering, University of California, 6195 Etcheverry Hall, Berkeley, CA 94720-1740, U.S.A.Search for more papers by this author T. I. Zohdi, Corresponding Author T. I. Zohdi [email protected] Department of Mechanical Engineering, University of California, 6195 Etcheverry Hall, Berkeley, CA 94720-1740, U.S.A.Department of Mechanical Engineering, University of California, 6195 Etcheverry Hall, Berkeley, CA 94720-1740, U.S.A.Search for more papers by this author First published: 03 December 2004 https://doi.org/10.1002/nme.1194Citations: 46AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The present work extends recent results in Zohdi (Int. J. Solids Struct., in press; Proc. Roy. Soc., in press) to develop models and robust solution strategies for the direct simulation of the dynamical flow of charged particles undergoing simultaneous contact, surface reactions and heat transfer. Emphasis is placed on the possibility of particle clustering which can lead to the formation of cluster-structures within the particulate flow. A recursive 'staggering' solution scheme is developed, whereby the time-steps are adaptively adjusted to control the rates of convergence within each time-step, and hence, the error associated with the incomplete resolution of the coupled interaction between the various fields and associated constraints. Representative numerical simulations are provided in order to illustrate the character of the model and the solution strategy. Copyright © 2004 John Wiley & Sons, Ltd. REFERENCES 1 Benz W. From dust to planets. Spatium 2000; 6: 3–14. Google Scholar 2 Benz W. Impact simulations with fracture. 1. Method and tests. Icarus 1994; 107: 98–116. 10.1006/icar.1994.1009 Web of Science®Google Scholar 3 Blum J, Wurm G. Impact simulations on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 2000; 143: 138–146. 10.1006/icar.1999.6234 CASWeb of Science®Google Scholar 4 Dominik C, Tielens AGGM. The physics of dust coagulation and the structure of dust aggregates in space. The Astrophysical Journal 1997; 480: 647–673. 10.1086/303996 CASWeb of Science®Google Scholar 5 Chokshi A, Tielens AGGM, Hollenbach D. Dust coagulation. The Astrophysical Journal 1993; 407: 806–819. 10.1086/172562 Web of Science®Google Scholar 6 Wurm G, Blum J, Colwell JE. A new mechanism relevant to the formation of planetesimals in the solar nebula. Icarus 2001; 151: 318–321. 10.1006/icar.2001.6620 CASWeb of Science®Google Scholar 7 Du Y, Li H, Kadanoff LP. Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Physical Review Letters 1995; 74: 1268. 10.1103/PhysRevLett.74.1268 PubMedWeb of Science®Google Scholar 8 Kokubo E, Ida S. Formation of protoplanets from planetesimals in the solar nebula. Icarus 2000; 143(1): 15–270. 10.1006/icar.1999.6237 Web of Science®Google Scholar 9 Kokubo E, Ida S. On runaway growth of planetesimals. Icarus 1996; 123(1): 180–191. 10.1006/icar.1996.0148 Web of Science®Google Scholar 10 Mitchell P, Frenklach M. Particle aggregation with simultaneous surface growth. Physical Review E 2003; 67: 061407. 10.1103/PhysRevE.67.061407 CASPubMedWeb of Science®Google Scholar 11 Grazier KR, Newman WI, Kaula WM, Hyman JM. Dynamical evolution of planetesimals in the outer solar system I. The jupiter/saturn zone. Icarus 2000; 140(2): 341–352. 10.1006/icar.1999.6146 Web of Science®Google Scholar 12 Grazier KR, Newman WI, Varadi F, Kaula WM, Hyman JM. Dynamical evolution of planetesimals in the outer solar system II. The saturn/uranus and uranus/neptune zones. Icarus 1999; 140(2): 353–368. 10.1006/icar.1999.6147 Web of Science®Google Scholar 13 Supulver KD, Lin DNC. Formation of icy planetesimals in a turbulent solar nebula. Icarus 2000; 146(2): 525–540. 10.1006/icar.2000.6418 Web of Science®Google Scholar 14 Tanga P, Babiano A, Dubrulle B, Provenzale A. Forming planetesimals in vortices. Icarus 1996; 121(1): 158–170. 10.1006/icar.1996.0076 Web of Science®Google Scholar 15 Cuzzi CN, Dobrovolskis AR, Champney JM. Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 1993; 106: 102–134. 10.1006/icar.1993.1161 Web of Science®Google Scholar 16 Weidenschilling SJ, Cuzzi JN. Formation of planetesimals in the solar nebula. Protostars and Planets III, EH Levy, JI Lunine (eds). University of Arizona Press: Tucson, 1993; 1031–1060. Google Scholar 17 Weidenschilling SJ, Spaute D, Davis DR, Marzari F, Ohtsuki K. Accretional evolution of a planetesimal swarm. Icarus 1997; 128(2): 429–455. 10.1006/icar.1997.5747 Web of Science®Google Scholar 18 Beckwith S, Henning T, Nakagawa Y. Dust particles in protoplanetary disks. In Protostars and Planets IVs, V Mannings, AP Boss, SS Russell (eds). University of Arizona Press: Tuscon, 2000. Google Scholar 19 Barge P, Sommeria J. Did planet formation begin inside persistent gaseous vortices? A&A, L1-4, 1995. Google Scholar 20 Pollack JN, Hollenbach D, Beckwith S, Simonelli DP, Roush T, Fong W. Composition and radiative properties in molecular clouds and accretion disks. The Astrophysical Journal 1994; 421: 615–639. 10.1086/173677 CASWeb of Science®Google Scholar 21 Lissauer JJ. Planet formation. Annual Review of Astronomy and Astrophysics 1993; 31: 129–174. CASGoogle Scholar 22 Barranco J, Marcus P, Umurhan O. Scaling and asymptotics of coherent vortices in protoplanetary disks. In Studying Turbulence Using Numerical Simulation. Databases-VIII, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University Press: Palo Alto, 2001. Google Scholar 23 Barranco J, Marcus P. Vortices in protoplanetary disks and the formation of planetesimals. In Studying Turbulence Using Numerical Simulation. Databases-VIII, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University Press: Palo Alto, 2001. Google Scholar 24 Behringer RP. The dynamics of flowing sand. Nonlinear Science Today 1993; 3: 1. PubMedWeb of Science®Google Scholar 25 Behringer RP, Baxter GW. Pattern formation, complexity and time-dependence in granular flows. Granular Matter—An Interdisciplinary Approach, A Mehta (ed.). Springer: New York, 1993; 85–119. Google Scholar 26 Behringer RP, Miller BJ. Stress fluctuations for sheared 3D granular materials. Proceedings, Powders and Grains 97, R Behringer, J Jenkins (eds). Balkema: Rotterdam, 1997; 333–336. Web of Science®Google Scholar 27 Behringer RP, Howell D, Veje C. Fluctuations in granular flows. Chaos 1999; 9: 559–572. 10.1063/1.166430 PubMedWeb of Science®Google Scholar 28 Tai Y-C, Noelle S, Gray JMNT, Hutter K. Shock capturing and front tracking methods for granular avalanches. Journal of Computational Physics 2002; 175: 269–301. 10.1006/jcph.2001.6946 CASWeb of Science®Google Scholar 29 Tai Y-C, Gray JMNT, Hutter K, Noelle S. Flow of dense avalanches past obstructions. Annals of Glaciology 2001; 32: 281–284. 10.3189/172756401781819166 Web of Science®Google Scholar 30 Tai Y-C, Noelle S, Gray JMNT, Hutter K. An accurate shock-capturing finite-difference method to slove the Savage–Hutter equations in avalanche dynamics. Annals of Glaciology 2001; 32: 263–267. 10.3189/172756401781819733 Web of Science®Google Scholar 31 Gray JMNT, Wieland M, Hutter K. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society London, A 1999; 455: 1841–1874. 10.1098/rspa.1999.0383 Web of Science®Google Scholar 32 Wieland M, Gray JMNT, Hutter K. Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. Journal of Fluid Mechanics 1999; 392: 73–100. 10.1017/S0022112099005467 Web of Science®Google Scholar 33 Berezin YA, Hutter K, Spodareva LA. Stability properties of shallow granular flows. International Journal of Nonlinear Mechanics 1998; 33(4): 647–658. 10.1016/S0020-7462(97)00036-X Web of Science®Google Scholar 34 Gray JMNT, Hutter K. Pattern formation in granular avalanches. Continuum Mechanics and Thermodynamics 1997; 9: 341–345. 10.1007/s001610050075 CASWeb of Science®Google Scholar 35 Gray JMNT. Granular flow in partially filled slowly rotating drums. Journal of Fluid Mechanics 2001; 441: 1–29. 10.1017/S0022112001004736 CASWeb of Science®Google Scholar 36 Hutter K. Avalanche dynamics. In Hydrology of Disasters, VP Singh (ed.). Kluwer Academic Publishers: Dordrecht, 1996; 317–394. 10.1007/978-94-015-8680-1_11 Google Scholar 37 Hutter K, Koch T, Plüss C, Savage SB. The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mechanica 1995; 109: 127–165. 10.1007/BF01176820 Web of Science®Google Scholar 38 Hutter K, Rajagopal KR. On flows of granular materials. Continuum Mechanics and Thermodynamics 1994; 6: 81–139. 10.1007/BF01140894 Web of Science®Google Scholar 39 Koch T, Greve R, Hutter K. Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and numerical computations. Proceedings of the Royal Society London, A 1994; 445: 415–435. 10.1098/rspa.1994.0069 Web of Science®Google Scholar 40 Greve R, Hutter K. Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Philosophical Transactions of the Royal Society London A 1993; 342: 573–600. 10.1098/rsta.1993.0033 Web of Science®Google Scholar 41 Hutter K, Siegel M, Savage SB, Nohguchi Y. Two-dimensional spreading of a granular avalanche down an inclined plane. Part I: theory. Acta Mechanica 1993; 100: 37–68. 10.1007/BF01176861 Web of Science®Google Scholar 42 Jaeger HM, Nagel SR. La Physique de l'Etat Granulaire. La Recherche 1992; 249: 1380. Google Scholar 43 Jaeger HM, Nagel SR. Physics of the granular state. Science 1992; 255: 1523. 10.1126/science.255.5051.1523 CASPubMedWeb of Science®Google Scholar 44 Nagel SR. Instabilities in a sandpile. Review of Modern Physics 1992; 64: 321. 10.1103/RevModPhys.64.321 Web of Science®Google Scholar 45 Liu CH, Jaeger HM, Nagel SR. Finite size effects in a sandpile. Physical Review A 1991; 43: 7091. 10.1103/PhysRevA.43.7091 PubMedWeb of Science®Google Scholar 46 Liu CH, Nagel SR. Sound in a granular material: disorder and nonlinearity. Physical Review B 1993; 48: 15646. 10.1103/PhysRevB.48.15646 CASWeb of Science®Google Scholar 47 Jaeger HM, Nagel SR. La Fisica del Estado Granular. Mundo Cientifico 1993; 132: 108. Google Scholar 48 Jaeger HM, Knight JB, Liu CH, Nagel SR. What is shaking in the sand box? Material Research Society Bulletin 1994; 19: 25. 10.1557/S0883769400036538 Web of Science®Google Scholar 49 Jaeger HM, Nagel SR, Behringer RP. The physics of granular materials. Physics Today 1996; 4: 32. 10.1063/1.881494 Web of Science®Google Scholar 50 Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids and gases. Reviews of Modern Physics 1996; 68: 1259. 10.1103/RevModPhys.68.1259 Web of Science®Google Scholar 51 Jaeger HM, Nagel SR. Dynamics of granular material. American Scientist 1997; 85: 540. Web of Science®Google Scholar 52 Zohdi TI. Modeling and direct simulation of near-field granular flows. The International Journal of Solids and Structures, in press. Google Scholar 53 Zohdi TI. A computational framework for agglomeration in thermo-chemically reacting granular flows. Proceedings of the Royal Society, in press. Google Scholar 54 Zohdi TI. Computational design of swarms. International Journal for Numerical Methods in Engineering 2003; 57: 2205–2219. 10.1002/nme.762 Web of Science®Google Scholar 55 Hale J, Kocak H. Dynamics and Bifurcations. Springer: Berlin, 1991. 10.1007/978-1-4612-4426-4 Google Scholar 56 Tabor D. Interaction between surfaces: adhesion and friction. In Surface Physics of Materials, vol. II, Chapter 10, JM Blakely (ed.). Academic Press: New York, San Francisco, London, 1975. 10.1016/B978-0-12-103808-3.50011-8 Google Scholar 57 Haile JM. Molecular Dynamics Simulations: Elementary Methods. Wiley: New York, 1992. Google Scholar 58 Hase WL. Molecular Dynamics of Clusters, Surfaces, Liquids, and Interfaces. Advances in Classical Trajectory Methods, vol. 4. JAI Press: Greenwich, 1999. Google Scholar 59 Schlick T. Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer: New York, 2000. Google Scholar 60 Rapaport DC. The Art of Molecular Dynamics Simulation. Cambridge University Press: Cambridge, 1995. Google Scholar 61 Moelwyn-Hughes EA. Physical Chemistry. Pergamon: Oxford, 1961. Google Scholar 62 Stillinger FH, Weber TA. Computer simulation of local order in condensed phases of silicon. Physical Review B 1985; 31: 5262–5271. 10.1103/PhysRevB.31.5262 CASPubMedWeb of Science®Google Scholar 63 Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters 1988; 61: 2879–2882. 10.1103/PhysRevLett.61.2879 CASPubMedWeb of Science®Google Scholar 64 Frenklach M, Carmer CS. Molecular dynamics using combined quantum and empirical forces: application to surface reactions. Advances in Classical Trajectory Methods 1999; 4: 27–63. CASGoogle Scholar 65 Johnson K. Contact Mechanics. Cambridge University Press: Cambridge, 1985. 10.1017/CBO9781139171731 Google Scholar 66 Oden JT, Pires E. Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. ASME Journal of Applied Mechanics 1983; 50: 67–76. 10.1115/1.3167019 Web of Science®Google Scholar 67 Martins JAC, Oden JT. Existence and uniqueness results in dynamics contact problems with nonlinear normal and friction interfaces. Nonlinear Analysis 1987; 11: 407–428. 10.1016/0362-546X(87)90055-1 Web of Science®Google Scholar 68 Kikuchi N, Oden JT. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM: Philadelphia, PA, 1988. 10.1137/1.9781611970845 Google Scholar 69 Klarbring A. Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction. Ingenieur-Archives 1990; 60: 529–541. Web of Science®Google Scholar 70 Cho H, Barber JR. Stability of the three-dimensional Coloumb friction law. Proceedings of the Royal Society 1999; 455(1983): 839–862. 10.1098/rspa.1999.0337 Web of Science®Google Scholar 71 Wriggers P. Computational Contact Mechanics. Wiley: New York, 2002. Google Scholar 72 Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. Dover: Toronto, 2001 (Re-issue). Google Scholar 73 Schmidt L. The Engineering of Chemical Reactions. Oxford University Press: Oxford, 1998. Google Scholar 74 Bohren C, Huffman D. Absorption and Scattering of Light by Small Particles. Wiley Science Paperback Series. John Wiley: Chichester, 1998. 10.1002/9783527618156 Google Scholar 75 Zohdi TI. An adaptive-recursive staggering strategy for simulating multifield coupled processes in micro-heterogeneous solids. International Journal for Numerical Methods in Engineering 2002; 53: 1511–1532. 10.1002/nme.348 Web of Science®Google Scholar 76 Zohdi TI. Modeling and simulation of a class of coupled thermochemo-mechanical processes in multiphase solids. Computer Methods in Applied Mechanics and Engineering 2004; 193(6–8): 679–699. 10.1016/j.cma.2003.11.006 Web of Science®Google Scholar 77 Schrefler BA. A partitioned solution procedure for geothermal reservoir analysis. Communications in Applied Numerical Methods 1985; 1: 53–56. 10.1002/cnm.1630010202 Web of Science®Google Scholar 78 Zienkiewicz OC. Coupled problems and their numerical solution. In Numerical Methods in Coupled Systems, RW Lewis, P Bettes, E Hinton (eds). Wiley: Chichester, 1984; 35–58. Google Scholar 79 Lewis RW, Schrefler BA, Simoni L. Coupling versus uncoupling in soil consolidation. International Journal for Numerical and Analytical Methods in Geomechanics 1992; 15: 533–548. 10.1002/nag.1610150803 Web of Science®Google Scholar 80 Lewis RW, Schrefler BA. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media ( 2nd edn). Wiley Press: New York, 1998. Google Scholar 81 Park KC, Felippa CA. Partitioned analysis of coupled systems. In Computational Methods for Transient Analysis, T Belytschko, TJR Hughes (eds). North Holland: Amsterdam, 1983. Google Scholar 82 Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations. International Journal for Numerical Methods in Fluids 1997; 25: 1207–1226. 10.1002/(SICI)1097-0363(19971130)25:10 3.0.CO;2-R CASWeb of Science®Google Scholar 83 Le Tallec P, Mouro J. Fluid structure interaction with large structural displacements. Computer Methods in Applied Mechanics and Engineering 2001; 190(24–25): 3039–3097. 10.1016/S0045-7825(00)00381-9 Web of Science®Google Scholar 84 Doltsinis ISt. Coupled field problems–solution techniques for sequential and parallel processing. In Solving Large-Scale Problems in Mechanics, M Papadrakakis (ed.). John Wiley: Chichester, 1993. Google Scholar 85 Doltsinis ISt. Solution of coupled systems by distinct operators. Engineering Computations 1997; 14: 829–868. 10.1108/02644409710192227 Web of Science®Google Scholar 86 Chung J, Grigoropoulos C, Greif R. Infrared thermal velocimetry in MEMS-based fluid devices. Journal of Microelectromechanical Systems 1999; 12(3): 365–371. 10.1109/JMEMS.2003.811753 Web of Science®Google Scholar 87 Shin Y, Chung J, Kladias N, Panides E, Domoto J, Grigoropoulos CP. Compressible flow of liquid in standing wave tube. Journal of Fluid Mechanics 2003; preprint, submitted. Google Scholar 88 Ashauer M, Glosch H, Hedrich F, Hey N, Sandmaier H, Lang W. Thermal flow sensor for liquids & gases. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, 1998; 427–432. Google Scholar 89 Holland JH. Adaptation in Natural and Artificial Systems. University of Michigan Press: Ann Arbor, MI, 1975. Google Scholar 90 Zohdi TI. Genetic optimization of statistically uncertain microheterogeneous solids. Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences 2003; 361(1806): 1021–1043. 10.1098/rsta.2003.1179 CASPubMedWeb of Science®Google Scholar Citing Literature Volume62, Issue721 February 2005Pages 870-898 ReferencesRelatedInformation
Referência(s)