Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution
2000; Wiley; Volume: 7; Issue: 6 Linguagem: Inglês
10.1002/1099-1506(200009)7
ISSN1099-1506
Autores Tópico(s)Numerical methods in inverse problems
ResumoNumerical Linear Algebra with ApplicationsVolume 7, Issue 6 p. 381-428 Research ArticleFull Access Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution J. W. He, Corresponding Author J. W. He [email protected] Department of Mathematics, University of Houston. Houston, TX 77204-3476, U.S.A.Department of Mathematics, University of Houston, Houston, TX 77204-3476, U.S.A.===Search for more papers by this authorR. Glowinski, R. Glowinski Department of Mathematics, University of Houston. Houston, TX 77204-3476, U.S.A.Search for more papers by this author J. W. He, Corresponding Author J. W. He [email protected] Department of Mathematics, University of Houston. Houston, TX 77204-3476, U.S.A.Department of Mathematics, University of Houston, Houston, TX 77204-3476, U.S.A.===Search for more papers by this authorR. Glowinski, R. Glowinski Department of Mathematics, University of Houston. Houston, TX 77204-3476, U.S.A.Search for more papers by this author First published: 22 August 2000 https://doi.org/10.1002/1099-1506(200009)7:6 3.0.CO;2-WCitations: 14AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The main goal of this article is to discuss a novel iterative method for the numerical simulation of a steady Bingham fluid flow in a cylindrical pipe. The method is of the primal-dual type and can be interpreted as an implicit scheme of backward Euler type, applied to a well chosen time dependent variant of the problem under consideration. A key ingredient of the algorithm is a kind of dynamical Tychonoff regularization of the fixed point relation verified by the dual solution. After proving the convergence of the method, we apply it to the solution of test problems and verify its anticipated good convergence properties. Copyright © 2000 John Wiley & Sons, Ltd. REFERENCES 1Morel J, Solimini S. Variational Methods in Image Segmentation. Birkhäuser: Boston, MA, 1994. 2Chan T, Golub G, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing 1999; 20(6): 1964–1977. 3Aluffi-Pentini F, Castrignano T, Maponi P, Parisi V, Zirilli F. Generalized solution of linear systems and image restoration. Journal of Optimization Theory and Applications 1999; 103(1): 45–64. 4Duvaut G, Lions J. Inequalities in Mechanics and Physics. Springer-Verlag: Berlin, 1976. 5Necas J. Les Méthodes Directes en Theorie des Equations Elliptiques. Masson: Paris, 1967. 6Adams R. Sobolev Spaces. Academic Press: New York, 1975. 7Lions J. Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag: Berlin, 1971. 8Glowinski R. Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer-Verlag: New York, 1984. 9Glowinski R, Lions J, Tremolières R. Numerical Analysis of Variational Inequalities. North-Holland: Amsterdam, 1981. 10Mossolov P, Miasnikov V. Variational methods in the theory of the fluidity of a viscous--plastic medium. Journal of Mechanics and Applied Mathematics 1965; 29: 468–492. 11Cea J, Glowinski R. Méthodes numériques pour l'écoulement laminaire d'un fluide rigide viscoplastique incompressible. International Journal of Computational Mathematics, Section B 1972; 3: 225–255. 12Opial Z. Weak convergence of the successive approximation for non-expansive mappings in Banach spaces. Bulletin of the American Mathematical Society 1967; 73: 591–597. 13Arrow K, Hurwicz L, Uzawa H. Studies in Nonlinear Programming. Stanford University Press: Stanford, 1958. 14Glowinski R, Tallec PL. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics. SIAM: Philadelphia, PA, 1989. 15Lions J, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag: Berlin, 1972. 16Strauss M. Variation of Korn's and Sobolev's Inequalities. In Proceedings of Symposia in Pure Mathematics. vol. 23. American Mathematical Society: Providence, RI, 1973; 207–214. 17Glowinski R. Sur l'approximation d'une inéquation variationelle elliptique de type Bingham. Revue Française d'Automatique Imformatique Recherche Opérationnelle 1976; 10(12): 13–30. 18Raviart P, Thomas J. Introduction à l'Analyse Numérique des Equations aux Dèrivées Partielles. Masson: Paris, 1983. 19Ciarlet P. The Finite Element Method for Elliptic Problems. North-Holland: Amsterdam, 1978. 20Ciarlet P. Basic error estimates for elliptic problems. In Handbook of Numerical Analysis, vol. 2. Elsevier: New York, 1991; 17–351. 21Golub G, Van Loan C. Matrix Computations. Johns Hopkins University Press: Baltimore, MD, 1996. 22Axelsson O, Barker V. Finite Element Solution of Boundary Value Problems: Theory and Computation. Academic Press: Orlando FL, 1984. 23Brenner S, Scott L. The Mathematical Theory of Finite Element Methods. Springer-Verlag: New York, 1994. 24Hackbusch W. Multi-Grid Methods and Applications. Springer-Verlag: New York, 1985. Citing Literature Volume7, Issue6Special Issue: Numerical Linear Algebra Methods for Computational Fluid Flow ProblemsSeptember 2000Pages 381-428 ReferencesRelatedInformation
Referência(s)