Moisture effect on the low- and high-temperature dielectric relaxations in nylon-6
1997; Wiley; Volume: 35; Issue: 17 Linguagem: Inglês
10.1002/(sici)1099-0488(199712)35
ISSN1099-0488
Autores Tópico(s)Polymer Nanocomposites and Properties
ResumoJournal of Polymer Science Part B: Polymer PhysicsVolume 35, Issue 17 p. 2879-2888 Article Moisture effect on the low- and high-temperature dielectric relaxations in nylon-6 E. Laredo, Corresponding Author E. Laredo [email protected] Physics Department, Universidad Simón Bolívar, Apartado 89.000, Caracas 1081, VenezuelaPhysics Department, Universidad Simón Bolívar, Apartado 89.000, Caracas 1081, VenezuelaSearch for more papers by this authorM. C. Hernandez, M. C. Hernandez Physics Department, Universidad Simón Bolívar, Apartado 89.000, Caracas 1081, VenezuelaSearch for more papers by this author E. Laredo, Corresponding Author E. Laredo [email protected] Physics Department, Universidad Simón Bolívar, Apartado 89.000, Caracas 1081, VenezuelaPhysics Department, Universidad Simón Bolívar, Apartado 89.000, Caracas 1081, VenezuelaSearch for more papers by this authorM. C. Hernandez, M. C. Hernandez Physics Department, Universidad Simón Bolívar, Apartado 89.000, Caracas 1081, VenezuelaSearch for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1099-0488(199712)35:17 3.0.CO;2-4Citations: 79AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The effect of water sorption on the dielectric relaxation processes of nylon-6 samples with water concentrations ranging from the dry to the water-saturated polymer has been studied by thermally stimulated depolarization currents experiments in a broad temperature range, from 77 to 365 K. The strengths of the low-temperature modes, γ- and β-peaks, are affected in opposite ways by the water concentration, h, as the first one shows a decrease in intensity and the second one grows as h increases. The precise determination of the relaxation parameters is made by the decomposition in elementary Debye processes and best fitting to the experimental profile of the complex peak. For h < 3%, the reorienting energies are almost independent of the water content, and the most significant intensity variations occur. The firmly bound water is held responsible for these effects. As for the higher temperature zone besides the α-peak, which is the dielectric manifestation of the glass transition, intermediate temperatures modes are observed at high h values and are originated by the loosely bound water, while the highest temperature peak is attributed to a Maxwell–Wagner interfacial polarization. The characteristic parameters of the α-mode are determined and related to the plasticization effect of water. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2879–2888, 1997 References and Notes 1 R. H. Boyd, J. Chem. Phys., 30, 1276 (1959). 2 H. W. Starkweather, Jr. and J. R. Barkley, J. Polym. Sci.: Polym. Phys. Ed., 19, 1211 (1981). 3 D. W. McCall and E. W. Anderson, J. Chem. Phys., 32, 237 (1960). 4 K. Pathmanathan and G. P. Johari, J. Chem. Soc., Faraday Trans., 91, 337 (1995). 5 K. Pathmanathan, J. Y. Cavaille, and G. P. Johari, J. Polym. Sci. B, 30, 341 (1992). 6 A. E. Woodward, J. A. Sauer, C. W. Deeley, and D. E. Kline, J. Colloid Sci., 12, 363 (1957). 7 S. Kapur, C. E. Rogers, and E. Baer, J. Polym. Sci.: Polym. Phys. Ed., 10, 2297 (1972). 8 S. Rong and H. L. Williams, J. Appl. Polym. Sci., 30, 2575 (1985). 9 H. M. Le Huy and J. Rault, Polymer, 35, 136 (1994). 10 J. Varlet, J. Y. Cavaille, and J. Perez, J. Polym. Sci.: Polym. Phys. Ed., 28, 2691 (1990). 11 D. Chatain, P. Gautier, and C. Lacabanne, J. Polym. Sci.: Polym. Phys. Ed., 11, 1631 (1973). 12 S. Ikeda and K. Matsuda, Jpn. J. Appl. Phys., 19, 855 (1980). 13 J. L. Gil-Zambrano and C. Juhasz, IEEE Trans. Elect. Ins., 24, 635 (1989). 14 B. Frank, P. Frübing, and P. Pissis, J. Polym. Sci.: Polym. Phys. Ed., 34, 1853 (1996). 15 R. Puffr and J. Sebenda, J. Polym. Sci. C, 16, 79 (1967). 16 M. Aldana, E. Laredo, A. Bello, and N. Suarez, J. Polym. Sci.: Polym. Phys. Ed., 32, 2197 (1994). 17 E. Laredo, M. Grimau, A. Müller, A. Bello, and N. Suarez, J. Polym. Sci., Part B: Polym. Phys., 34, 2863 (1996). 18 N. Suarez, E. Laredo, A. Bello, and J. Kohn, J. Appl. Polym. Sci., 63, 1457 (1997). 19 M. A. Gomez, C. Marco, J. M. G. Fatou, N. Suarez, E. Laredo, and A. Bello, J. Polym. Sci., Part B: Polym. Phys., 33, 1259 (1995). 20 N. Suarez, E. Laredo, A. Bello, M. A. Gomez, C. Marco, and J. M. G. Fatou, Polymer, 37, 3207 (1995). 21 E. Laredo, N. Suarez, A. Bello, and L. Marquez, J. Polym. Sci., Part B: Polym. Phys., 34, 641 (1996). 22 M. H. Cohen and G. S. Grest, Phys. Rev. B, 24, 4091 (1981). 23 G. Adam and J. H. Gibbs, J. Chem. Phys., 43, 139 (1965). 24 G. J. Kettle, Polymer, 18, 742 (1977). Citing Literature Volume35, Issue17December 1997Pages 2879-2888 ReferencesRelatedInformation
Referência(s)