Artigo Revisado por pares

Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals

1969; American Institute of Physics; Volume: 51; Issue: 6 Linguagem: Inglês

10.1063/1.1672392

ISSN

1520-9032

Autores

Warren J. Hehre, R. F. Stewart, John A. Pople,

Tópico(s)

Machine Learning in Materials Science

Resumo

Least-squares representations of Slater-type atomic orbitals as a sum of Gaussian-type orbitals are presented. These have the special feature that common Gaussian exponents are shared between Slater-type 2s and 2p functions. Use of these atomic orbitals in self-consistent molecular-orbital calculations is shown to lead to values of atomization energies, atomic populations, and electric dipole moments which converge rapidly (with increasing size of Gaussian expansion) to the values appropriate for pure Slater-type orbitals. The ζ exponents (or scale factors) for the atomic orbitals which are optimized for a number of molecules are also shown to be nearly independent of the number of Gaussian functions. A standard set of ζ values for use in molecular calculations is suggested on the basis of this study and is shown to be adequate for the calculation of total and atomization energies, but less appropriate for studies of charge distribution.

Referência(s)
Altmetric
PlumX